Nguyen Minh Thuy , Vo Quoc Tien , Tran Ngoc Giau , Hong Van Hao , Vo Quang Minh , Ngo Van Tai
{"title":"Gấc \"假种皮的泡沫垫干燥条件对干燥速率和生物活性化合物的影响:通过新型统计方法进行优化","authors":"Nguyen Minh Thuy , Vo Quoc Tien , Tran Ngoc Giau , Hong Van Hao , Vo Quang Minh , Ngo Van Tai","doi":"10.1016/j.fochx.2024.101849","DOIUrl":null,"url":null,"abstract":"<div><div>This study was conducted to optimize the foam-mat drying conditions to maximize quality [β-carotene and total polyphenol content (TPC)] and drying rate of “Gấc” aril powder by using two novel statistical techniques as Response Surface Methodology (RSM) and Artificial Neural Network (ANN) couple with Genetic Algorithm (GA). During production process, level of egg albumin (EA) used for foaming process and drying temperature mainly influenced the drying rate and content of antioxidant compounds in powder. ANN model of 3–10–3 showed more accuracy and faster prediction capacity than RSM model did. ANN-GA model predicted the optimal conditions to be 13.31 % EA, 0.26 % xanthan gum and drying temperature of 73.1 °C, with the drying rate of 1.89 g-water/g-dry matter/min, β-carotene content of 395.88 μg/g, TPC of 1.68 mgGAE/g. These results confirmed the suitability and promising of foam-mat drying for “Gấc” aril powder production, to be producing food ingredient containing highly bioactive compounds.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"Article 101849"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590157524007375/pdfft?md5=3f491ea3d809ca5b4784360d31538823&pid=1-s2.0-S2590157524007375-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of foam-mat drying conditions of “Gấc” aril on drying rate and bioactive compounds: Optimization by novel statistical approaches\",\"authors\":\"Nguyen Minh Thuy , Vo Quoc Tien , Tran Ngoc Giau , Hong Van Hao , Vo Quang Minh , Ngo Van Tai\",\"doi\":\"10.1016/j.fochx.2024.101849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study was conducted to optimize the foam-mat drying conditions to maximize quality [β-carotene and total polyphenol content (TPC)] and drying rate of “Gấc” aril powder by using two novel statistical techniques as Response Surface Methodology (RSM) and Artificial Neural Network (ANN) couple with Genetic Algorithm (GA). During production process, level of egg albumin (EA) used for foaming process and drying temperature mainly influenced the drying rate and content of antioxidant compounds in powder. ANN model of 3–10–3 showed more accuracy and faster prediction capacity than RSM model did. ANN-GA model predicted the optimal conditions to be 13.31 % EA, 0.26 % xanthan gum and drying temperature of 73.1 °C, with the drying rate of 1.89 g-water/g-dry matter/min, β-carotene content of 395.88 μg/g, TPC of 1.68 mgGAE/g. These results confirmed the suitability and promising of foam-mat drying for “Gấc” aril powder production, to be producing food ingredient containing highly bioactive compounds.</div></div>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"24 \",\"pages\":\"Article 101849\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590157524007375/pdfft?md5=3f491ea3d809ca5b4784360d31538823&pid=1-s2.0-S2590157524007375-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590157524007375\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524007375","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Impact of foam-mat drying conditions of “Gấc” aril on drying rate and bioactive compounds: Optimization by novel statistical approaches
This study was conducted to optimize the foam-mat drying conditions to maximize quality [β-carotene and total polyphenol content (TPC)] and drying rate of “Gấc” aril powder by using two novel statistical techniques as Response Surface Methodology (RSM) and Artificial Neural Network (ANN) couple with Genetic Algorithm (GA). During production process, level of egg albumin (EA) used for foaming process and drying temperature mainly influenced the drying rate and content of antioxidant compounds in powder. ANN model of 3–10–3 showed more accuracy and faster prediction capacity than RSM model did. ANN-GA model predicted the optimal conditions to be 13.31 % EA, 0.26 % xanthan gum and drying temperature of 73.1 °C, with the drying rate of 1.89 g-water/g-dry matter/min, β-carotene content of 395.88 μg/g, TPC of 1.68 mgGAE/g. These results confirmed the suitability and promising of foam-mat drying for “Gấc” aril powder production, to be producing food ingredient containing highly bioactive compounds.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.