增强掺锆二氧化铀的辐射损伤耐受性

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materialia Pub Date : 2024-09-08 DOI:10.1016/j.mtla.2024.102226
R. Mohun , S.C. Middleburgh , P.J. Thomas , C.L. Corkhill
{"title":"增强掺锆二氧化铀的辐射损伤耐受性","authors":"R. Mohun ,&nbsp;S.C. Middleburgh ,&nbsp;P.J. Thomas ,&nbsp;C.L. Corkhill","doi":"10.1016/j.mtla.2024.102226","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the effect of tetravalent Zr doping on the radiation behaviour of UO<sub>2</sub> through a combination of experimental and theoretical approaches. The intrinsic changes that Zr introduces in UO<sub>2</sub> were quantified using X-ray diffraction and Raman spectroscopy, which reveal a shrinkage of the lattice volume and the formation of ZrO<sub>8</sub>-type clusters. Heavy-ion irradiation was carried out on both undoped and doped UO<sub>2</sub> under conditions similar to the ballistic regime of fission products in nuclear fuels. Empirical data, together with DTF+U simulations, found that Zr doping modifies the irradiation-induced defect mechanisms by enabling recombination pathways, allowing a rapid recovery of the UO<sub>2</sub> lattice. The fundamental mechanisms involving the role of dopant in modifying the radiation damage kinetics are discussed in this paper, as well as the subsequent evolution in fluorite-structured materials relevant to nuclear fuels.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589152924002230/pdfft?md5=fdaf063da3101d851801d2fc77525643&pid=1-s2.0-S2589152924002230-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced radiation damage tolerance in Zr-doped UO2\",\"authors\":\"R. Mohun ,&nbsp;S.C. Middleburgh ,&nbsp;P.J. Thomas ,&nbsp;C.L. Corkhill\",\"doi\":\"10.1016/j.mtla.2024.102226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the effect of tetravalent Zr doping on the radiation behaviour of UO<sub>2</sub> through a combination of experimental and theoretical approaches. The intrinsic changes that Zr introduces in UO<sub>2</sub> were quantified using X-ray diffraction and Raman spectroscopy, which reveal a shrinkage of the lattice volume and the formation of ZrO<sub>8</sub>-type clusters. Heavy-ion irradiation was carried out on both undoped and doped UO<sub>2</sub> under conditions similar to the ballistic regime of fission products in nuclear fuels. Empirical data, together with DTF+U simulations, found that Zr doping modifies the irradiation-induced defect mechanisms by enabling recombination pathways, allowing a rapid recovery of the UO<sub>2</sub> lattice. The fundamental mechanisms involving the role of dopant in modifying the radiation damage kinetics are discussed in this paper, as well as the subsequent evolution in fluorite-structured materials relevant to nuclear fuels.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589152924002230/pdfft?md5=fdaf063da3101d851801d2fc77525643&pid=1-s2.0-S2589152924002230-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152924002230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过实验和理论相结合的方法,探讨了掺杂四价锆对二氧化钛辐射行为的影响。利用 X 射线衍射和拉曼光谱对二氧化钛中掺入的锆的内在变化进行了量化,结果表明晶格体积缩小并形成了 ZrO8 型簇。在类似于核燃料中裂变产物弹道机制的条件下,对未掺杂和掺杂的二氧化铀进行了重离子辐照。通过经验数据和 DTF+U 模拟发现,掺杂 Zr 改变了辐照引起的缺陷机制,使重组途径成为可能,从而使二氧化铀晶格迅速恢复。本文讨论了掺杂剂在改变辐照损伤动力学中作用的基本机制,以及与核燃料相关的萤石结构材料的后续演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced radiation damage tolerance in Zr-doped UO2
This study explores the effect of tetravalent Zr doping on the radiation behaviour of UO2 through a combination of experimental and theoretical approaches. The intrinsic changes that Zr introduces in UO2 were quantified using X-ray diffraction and Raman spectroscopy, which reveal a shrinkage of the lattice volume and the formation of ZrO8-type clusters. Heavy-ion irradiation was carried out on both undoped and doped UO2 under conditions similar to the ballistic regime of fission products in nuclear fuels. Empirical data, together with DTF+U simulations, found that Zr doping modifies the irradiation-induced defect mechanisms by enabling recombination pathways, allowing a rapid recovery of the UO2 lattice. The fundamental mechanisms involving the role of dopant in modifying the radiation damage kinetics are discussed in this paper, as well as the subsequent evolution in fluorite-structured materials relevant to nuclear fuels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊最新文献
Rapid biofabrication of cell-free, anisotropic collagen tissues using a novel horizontal shear flow technique Biomimetic apatites functionalized with antioxidant phytotherapeutics: The case of chlorogenic and sinapic phenolic compounds Evaluation of elastic constants of M23C6 and M7C3 embedded in Fe-Cr-C alloys using in-situ XRD tensile test and self-consistent model In situ weak-beam scanning transmission electron microscopy observation of geometrically necessary dislocations formed by Mn precipitates in A533B alloy steel Effect of grain size and dislocation density on thermal stability of Al-Cu-Mg alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1