基于双随机相位编码的时相压缩复振幅成像技术

IF 3.5 2区 工程技术 Q2 OPTICS Optics and Lasers in Engineering Pub Date : 2024-09-23 DOI:10.1016/j.optlaseng.2024.108599
{"title":"基于双随机相位编码的时相压缩复振幅成像技术","authors":"","doi":"10.1016/j.optlaseng.2024.108599","DOIUrl":null,"url":null,"abstract":"<div><div>Snapshot temporal compressive imaging offers a potent method for capturing high-dimensional spatiotemporal information from a superimposed 2D image of a dynamic scene. However, despite its notable bandwidth-saving capability, simultaneous acquisition of spatiotemporal intensity and phase information remains challenging due to the phase insensitivity of detectors. To address this issue, a novel temporal compressive complex amplitude imaging (TC<img>CAI) method based on double random phase encoding is proposed here. Within TC<img>CAI, the target scene undergoes spatial modulation by a static phase mask in the spatial domain, followed by spatial encoding by an ultrahigh-speed-switchable phase mask in the spatial frequency domain after a Fourier transform. Adjacently, the scene is inversely Fourier transformed and integrally exposed onto a planar detector. Ultimately, the complex amplitude information, sensitive to both intensity and phase, can be faithfully reconstructed over time using a plug-and-play-based deep image prior algorithm. The feasibility, robustness, and superiority of TC<img>CAI over intensity encoding-based methods are demonstrated through simulation. This approach is expected to pave the way for real-time multidimensional temporal imaging.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal compressive complex amplitude imaging based on double random phase encoding\",\"authors\":\"\",\"doi\":\"10.1016/j.optlaseng.2024.108599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Snapshot temporal compressive imaging offers a potent method for capturing high-dimensional spatiotemporal information from a superimposed 2D image of a dynamic scene. However, despite its notable bandwidth-saving capability, simultaneous acquisition of spatiotemporal intensity and phase information remains challenging due to the phase insensitivity of detectors. To address this issue, a novel temporal compressive complex amplitude imaging (TC<img>CAI) method based on double random phase encoding is proposed here. Within TC<img>CAI, the target scene undergoes spatial modulation by a static phase mask in the spatial domain, followed by spatial encoding by an ultrahigh-speed-switchable phase mask in the spatial frequency domain after a Fourier transform. Adjacently, the scene is inversely Fourier transformed and integrally exposed onto a planar detector. Ultimately, the complex amplitude information, sensitive to both intensity and phase, can be faithfully reconstructed over time using a plug-and-play-based deep image prior algorithm. The feasibility, robustness, and superiority of TC<img>CAI over intensity encoding-based methods are demonstrated through simulation. This approach is expected to pave the way for real-time multidimensional temporal imaging.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624005773\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005773","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

快照时空压缩成像技术为从动态场景的叠加二维图像中捕捉高维时空信息提供了一种有效的方法。然而,尽管这种方法具有显著的带宽节省能力,但由于探测器对相位不敏感,同时获取时空强度和相位信息仍然具有挑战性。为解决这一问题,本文提出了一种基于双随机相位编码的新型时空压缩复合振幅成像(TCCAI)方法。在 TCCAI 方法中,目标场景先在空间域通过静态相位掩码进行空间调制,然后在傅立叶变换后在空间频率域通过超高速可切换相位掩码进行空间编码。紧接着,场景经过反傅里叶变换并整体曝光到平面探测器上。最终,利用一种即插即用的深度图像先验算法,可以忠实地重建对强度和相位都很敏感的复杂振幅信息。通过仿真证明了 TCCAI 的可行性、鲁棒性和优于基于强度编码的方法。这种方法有望为实时多维时间成像铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal compressive complex amplitude imaging based on double random phase encoding
Snapshot temporal compressive imaging offers a potent method for capturing high-dimensional spatiotemporal information from a superimposed 2D image of a dynamic scene. However, despite its notable bandwidth-saving capability, simultaneous acquisition of spatiotemporal intensity and phase information remains challenging due to the phase insensitivity of detectors. To address this issue, a novel temporal compressive complex amplitude imaging (TCCAI) method based on double random phase encoding is proposed here. Within TCCAI, the target scene undergoes spatial modulation by a static phase mask in the spatial domain, followed by spatial encoding by an ultrahigh-speed-switchable phase mask in the spatial frequency domain after a Fourier transform. Adjacently, the scene is inversely Fourier transformed and integrally exposed onto a planar detector. Ultimately, the complex amplitude information, sensitive to both intensity and phase, can be faithfully reconstructed over time using a plug-and-play-based deep image prior algorithm. The feasibility, robustness, and superiority of TCCAI over intensity encoding-based methods are demonstrated through simulation. This approach is expected to pave the way for real-time multidimensional temporal imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
期刊最新文献
Light field Laparoscope imaging model and calibration method based on flexible aperture-angular plane Wafer chamfering grinding wheels dressing via dynamic deflection laser beam Full polarimetric evaluation of the anamorphic transfer function for pixelated liquid crystal microdisplays Enhanced light field depth estimation through occlusion refinement and feature fusion Highly-secure scattering-media-based key storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1