特定撞击颈椎模型的开发、校准和验证:使用混合多体和有限元方法的新方法

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer methods and programs in biomedicine Pub Date : 2024-09-18 DOI:10.1016/j.cmpb.2024.108430
Thomas Holzinger , Dario Cazzola , Benedikt Sagl
{"title":"特定撞击颈椎模型的开发、校准和验证:使用混合多体和有限元方法的新方法","authors":"Thomas Holzinger ,&nbsp;Dario Cazzola ,&nbsp;Benedikt Sagl","doi":"10.1016/j.cmpb.2024.108430","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Spinal cord injuries can have a severe impact on athletes’ or patients’ lives. High axial impact scenarios like tackling and scrummaging can cause hyperflexion and buckling of the cervical spine, which is often connected with bilateral facet dislocation. Typically, finite-element (FE) or musculoskeletal models are applied to investigate these scenarios, however, they have the drawbacks of high computational cost and lack of soft tissue information, respectively. Moreover, material properties of the involved tissues are commonly tested in quasi-static conditions, which do not accurately capture the mechanical behavior during impact scenarios. Thus, the aim of this study was to develop, calibrate and validate an approach for the creation of impact-specific hybrid, rigid body - finite-element spine models for high-dynamic axial impact scenarios.</div></div><div><h3>Methods:</h3><div>Five porcine cervical spine models were used to replicate in-vitro experiments to calibrate stiffness and damping parameters of the intervertebral joints by matching the kinematics of the in-vitro with the in-silico experiments. Afterwards, a five-fold cross-validation was conducted. Additionally, the von Mises stress of the lumped FE-discs was investigated during impact.</div></div><div><h3>Results:</h3><div>The results of the calibration and validation of our hybrid approach agree well with the in-vitro experiments. The stress maps of the lumped FE-discs showed that the highest stress of the most superior lumped disc was located anterior while the remaining lumped discs had their maximum in the posterior portion.</div></div><div><h3>Conclusion:</h3><div>Our hybrid method demonstrated the importance of impact-specific modeling. Overall, our hybrid modeling approach enhances the possibilities of identifying spine injury mechanisms by facilitating dynamic, impact-specific computational models.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108430"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169260724004231/pdfft?md5=ce1e473dd9a8e164ca33393fec592b86&pid=1-s2.0-S0169260724004231-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development, calibration and validation of impact-specific cervical spine models: A novel approach using hybrid multibody and finite-element methods\",\"authors\":\"Thomas Holzinger ,&nbsp;Dario Cazzola ,&nbsp;Benedikt Sagl\",\"doi\":\"10.1016/j.cmpb.2024.108430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective:</h3><div>Spinal cord injuries can have a severe impact on athletes’ or patients’ lives. High axial impact scenarios like tackling and scrummaging can cause hyperflexion and buckling of the cervical spine, which is often connected with bilateral facet dislocation. Typically, finite-element (FE) or musculoskeletal models are applied to investigate these scenarios, however, they have the drawbacks of high computational cost and lack of soft tissue information, respectively. Moreover, material properties of the involved tissues are commonly tested in quasi-static conditions, which do not accurately capture the mechanical behavior during impact scenarios. Thus, the aim of this study was to develop, calibrate and validate an approach for the creation of impact-specific hybrid, rigid body - finite-element spine models for high-dynamic axial impact scenarios.</div></div><div><h3>Methods:</h3><div>Five porcine cervical spine models were used to replicate in-vitro experiments to calibrate stiffness and damping parameters of the intervertebral joints by matching the kinematics of the in-vitro with the in-silico experiments. Afterwards, a five-fold cross-validation was conducted. Additionally, the von Mises stress of the lumped FE-discs was investigated during impact.</div></div><div><h3>Results:</h3><div>The results of the calibration and validation of our hybrid approach agree well with the in-vitro experiments. The stress maps of the lumped FE-discs showed that the highest stress of the most superior lumped disc was located anterior while the remaining lumped discs had their maximum in the posterior portion.</div></div><div><h3>Conclusion:</h3><div>Our hybrid method demonstrated the importance of impact-specific modeling. Overall, our hybrid modeling approach enhances the possibilities of identifying spine injury mechanisms by facilitating dynamic, impact-specific computational models.</div></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"257 \",\"pages\":\"Article 108430\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169260724004231/pdfft?md5=ce1e473dd9a8e164ca33393fec592b86&pid=1-s2.0-S0169260724004231-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260724004231\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004231","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:脊髓损伤会严重影响运动员或患者的生活。高轴向冲击情景(如擒抱和铲球)可导致颈椎过度屈曲和屈曲,这通常与双侧关节面脱位有关。通常情况下,有限元(FE)或肌肉骨骼模型被用于研究这些情况,但它们分别存在计算成本高和缺乏软组织信息的缺点。此外,相关组织的材料特性通常在准静态条件下进行测试,无法准确捕捉撞击情况下的机械行为。方法:使用五个猪颈椎模型复制体外实验,通过匹配体外实验和室内实验的运动学参数来校准椎间关节的刚度和阻尼参数。之后,进行了五倍交叉验证。结果:我们的混合方法的校准和验证结果与体外实验结果非常吻合。块状 FE 盘的应力图显示,最上层块状盘的最大应力位于前部,而其余块状盘的最大应力位于后部。总之,我们的混合建模方法通过建立针对特定撞击的动态计算模型,提高了确定脊柱损伤机制的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development, calibration and validation of impact-specific cervical spine models: A novel approach using hybrid multibody and finite-element methods

Background and Objective:

Spinal cord injuries can have a severe impact on athletes’ or patients’ lives. High axial impact scenarios like tackling and scrummaging can cause hyperflexion and buckling of the cervical spine, which is often connected with bilateral facet dislocation. Typically, finite-element (FE) or musculoskeletal models are applied to investigate these scenarios, however, they have the drawbacks of high computational cost and lack of soft tissue information, respectively. Moreover, material properties of the involved tissues are commonly tested in quasi-static conditions, which do not accurately capture the mechanical behavior during impact scenarios. Thus, the aim of this study was to develop, calibrate and validate an approach for the creation of impact-specific hybrid, rigid body - finite-element spine models for high-dynamic axial impact scenarios.

Methods:

Five porcine cervical spine models were used to replicate in-vitro experiments to calibrate stiffness and damping parameters of the intervertebral joints by matching the kinematics of the in-vitro with the in-silico experiments. Afterwards, a five-fold cross-validation was conducted. Additionally, the von Mises stress of the lumped FE-discs was investigated during impact.

Results:

The results of the calibration and validation of our hybrid approach agree well with the in-vitro experiments. The stress maps of the lumped FE-discs showed that the highest stress of the most superior lumped disc was located anterior while the remaining lumped discs had their maximum in the posterior portion.

Conclusion:

Our hybrid method demonstrated the importance of impact-specific modeling. Overall, our hybrid modeling approach enhances the possibilities of identifying spine injury mechanisms by facilitating dynamic, impact-specific computational models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
期刊最新文献
Computational hemodynamic indices to identify Transcatheter Aortic Valve Implantation degeneration One-class classification with confound control for cognitive screening in older adults using gait, fingertapping, cognitive, and dual tasks A porohyperelastic scheme targeted at High-Performance Computing frameworks for the simulation of the intervertebral disc CIMIL-CRC: A clinically-informed multiple instance learning framework for patient-level colorectal cancer molecular subtypes classification from H&E stained images CTGAN-driven synthetic data generation: A multidisciplinary, expert-guided approach (TIMA)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1