{"title":"半线性抛物方程的惯性流形在 Lipschitz 摄动下的稳定性","authors":"Jihoon Lee , Thanhnguyen Nguyen","doi":"10.1016/j.nonrwa.2024.104219","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study the stability and continuity of inertial manifolds for semilinear parabolic equations. More precisely, we prove the continuity of inertial manifolds and the Gromov–Hausdorff stability of dynamical systems on inertial manifolds for reaction diffusion equations under Lipschitz perturbations of the domain and equation, using a nontrivial generalization of ODE approach discussed in Romanov (1994).</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"81 ","pages":"Article 104219"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of inertial manifolds for semilinear parabolic equations under Lipschitz perturbations\",\"authors\":\"Jihoon Lee , Thanhnguyen Nguyen\",\"doi\":\"10.1016/j.nonrwa.2024.104219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we study the stability and continuity of inertial manifolds for semilinear parabolic equations. More precisely, we prove the continuity of inertial manifolds and the Gromov–Hausdorff stability of dynamical systems on inertial manifolds for reaction diffusion equations under Lipschitz perturbations of the domain and equation, using a nontrivial generalization of ODE approach discussed in Romanov (1994).</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"81 \",\"pages\":\"Article 104219\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001585\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001585","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stability of inertial manifolds for semilinear parabolic equations under Lipschitz perturbations
In this paper we study the stability and continuity of inertial manifolds for semilinear parabolic equations. More precisely, we prove the continuity of inertial manifolds and the Gromov–Hausdorff stability of dynamical systems on inertial manifolds for reaction diffusion equations under Lipschitz perturbations of the domain and equation, using a nontrivial generalization of ODE approach discussed in Romanov (1994).
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.