Tengfei Han , Yanshai Wang , Shufen Zhang , Benzhi Ju
{"title":"\"一石三鸟 \"战略,打造易于再加工的纤维素热固性树脂","authors":"Tengfei Han , Yanshai Wang , Shufen Zhang , Benzhi Ju","doi":"10.1016/j.polymdegradstab.2024.111009","DOIUrl":null,"url":null,"abstract":"<div><div>Cellulose is the most abundant natural polypolysaccharide and is an ideal raw material to replace petroleum-based plastics. However, natural cellulose is difficult to be thermo-processed like conventional plastics because of the rich and strong hydrogen bonds interactions. In this study, a series of dialdehyde derivatives of cellulose (DACs) were prepared by periodate oxidation of cellulose, and cellulose covalent adaptive networks based on acetal dynamic covalent bonds (ACCs) were prepared using dipentaerythritol as a crosslinker for DAC. This strategy can introduce acetal bonds, weaken hydrogen bonds, and reduce rigidity to kill three birds with one stone. The excellent reprocessing performance of ACCs is attributed to the reconstruction of the cellulose hydrogen bond network by acetal bonds, and the reversible exchange reaction of the acetal bonds at high temperatures endows the cellulose chains with mobility, allowing ACCs to be remodeled by hot pressing at 90°C for 15 min. The excellent stability and reprocessability of ACCs hold the promise of replacing current non-renewable petroleum-based plastics and provide inspiration for the development of other types of biomass plastics.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"230 ","pages":"Article 111009"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Three birds with one stone” strategy for building easily reprocessable cellulosic thermosetting resins\",\"authors\":\"Tengfei Han , Yanshai Wang , Shufen Zhang , Benzhi Ju\",\"doi\":\"10.1016/j.polymdegradstab.2024.111009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cellulose is the most abundant natural polypolysaccharide and is an ideal raw material to replace petroleum-based plastics. However, natural cellulose is difficult to be thermo-processed like conventional plastics because of the rich and strong hydrogen bonds interactions. In this study, a series of dialdehyde derivatives of cellulose (DACs) were prepared by periodate oxidation of cellulose, and cellulose covalent adaptive networks based on acetal dynamic covalent bonds (ACCs) were prepared using dipentaerythritol as a crosslinker for DAC. This strategy can introduce acetal bonds, weaken hydrogen bonds, and reduce rigidity to kill three birds with one stone. The excellent reprocessing performance of ACCs is attributed to the reconstruction of the cellulose hydrogen bond network by acetal bonds, and the reversible exchange reaction of the acetal bonds at high temperatures endows the cellulose chains with mobility, allowing ACCs to be remodeled by hot pressing at 90°C for 15 min. The excellent stability and reprocessability of ACCs hold the promise of replacing current non-renewable petroleum-based plastics and provide inspiration for the development of other types of biomass plastics.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"230 \",\"pages\":\"Article 111009\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024003537\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024003537","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
“Three birds with one stone” strategy for building easily reprocessable cellulosic thermosetting resins
Cellulose is the most abundant natural polypolysaccharide and is an ideal raw material to replace petroleum-based plastics. However, natural cellulose is difficult to be thermo-processed like conventional plastics because of the rich and strong hydrogen bonds interactions. In this study, a series of dialdehyde derivatives of cellulose (DACs) were prepared by periodate oxidation of cellulose, and cellulose covalent adaptive networks based on acetal dynamic covalent bonds (ACCs) were prepared using dipentaerythritol as a crosslinker for DAC. This strategy can introduce acetal bonds, weaken hydrogen bonds, and reduce rigidity to kill three birds with one stone. The excellent reprocessing performance of ACCs is attributed to the reconstruction of the cellulose hydrogen bond network by acetal bonds, and the reversible exchange reaction of the acetal bonds at high temperatures endows the cellulose chains with mobility, allowing ACCs to be remodeled by hot pressing at 90°C for 15 min. The excellent stability and reprocessability of ACCs hold the promise of replacing current non-renewable petroleum-based plastics and provide inspiration for the development of other types of biomass plastics.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.