自热养护及其对不锈钢丝和钢纤维混合超高性能混凝土自感性能的影响

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Sensors and Actuators A-physical Pub Date : 2024-09-19 DOI:10.1016/j.sna.2024.115913
{"title":"自热养护及其对不锈钢丝和钢纤维混合超高性能混凝土自感性能的影响","authors":"","doi":"10.1016/j.sna.2024.115913","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to develop ultra-high performance concrete (UHPC) with self-heating curing and self-sensing properties by incorporating hybrid stainless steel wires (SSWs) and steel fibers (SFs) to advance the safety, function/intelligence, and resilience of infrastructures. 0.2 vol% SSWs with micro diameter can already form overlapped conductive network inside UHPC together with SFs to decrease the electrical resistivity and enhance high-efficiency conversion rate from electric energy to Joule heat. As 20 W input power is applied and sustained, the electrical resistivity of UHPC with hybrid 0.2 vol% SSWs and 1.6 vol% SFs (W02F16) first decreases from 45.1 Ω∙cm to 8.3 Ω∙cm and then to 7.88 Ω∙cm due to the field emission effect and the microscopic thermal expansion of SSWs. The surface temperature of W02F16 specimens reaches 78.6 ℃ for 73 minutes self-heating with an average heating rate of 0.821 ℃/min and a temperature difference lower than 11.6 ℃. Meanwhile, the fractional change in electrical resistivity and sensitivity corresponding to peak flexural stress of W02F16 after 8 h self-heating curing can reach 58.3 % and 3.22 %/MPa, higher 2.1 and 3.6 times than that after 28 d standard curing. Furthermore, self-heating curing UHPC composites at 28 d possesses more stable and sensitive self-sensing performance especially within pre-peak flexural stress period, resulting from the coarsening effect of direct current on SSWs’ interface to regulate and control of conductive pathway in concrete. This is the innovative demonstration that self-heating curing process can endow hybrid SSWs and SFs reinforced UHPC with stable/high self-sensing sensitivity to rapidly fabricate multifunctional/smart infrastructures with the abilities of structural health monitoring, snow and ice self-melting, and indoor heating.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-heating curing and its influence on self-sensing properties of ultra-high performance concrete with hybrid stainless steel wires and steel fibers\",\"authors\":\"\",\"doi\":\"10.1016/j.sna.2024.115913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aims to develop ultra-high performance concrete (UHPC) with self-heating curing and self-sensing properties by incorporating hybrid stainless steel wires (SSWs) and steel fibers (SFs) to advance the safety, function/intelligence, and resilience of infrastructures. 0.2 vol% SSWs with micro diameter can already form overlapped conductive network inside UHPC together with SFs to decrease the electrical resistivity and enhance high-efficiency conversion rate from electric energy to Joule heat. As 20 W input power is applied and sustained, the electrical resistivity of UHPC with hybrid 0.2 vol% SSWs and 1.6 vol% SFs (W02F16) first decreases from 45.1 Ω∙cm to 8.3 Ω∙cm and then to 7.88 Ω∙cm due to the field emission effect and the microscopic thermal expansion of SSWs. The surface temperature of W02F16 specimens reaches 78.6 ℃ for 73 minutes self-heating with an average heating rate of 0.821 ℃/min and a temperature difference lower than 11.6 ℃. Meanwhile, the fractional change in electrical resistivity and sensitivity corresponding to peak flexural stress of W02F16 after 8 h self-heating curing can reach 58.3 % and 3.22 %/MPa, higher 2.1 and 3.6 times than that after 28 d standard curing. Furthermore, self-heating curing UHPC composites at 28 d possesses more stable and sensitive self-sensing performance especially within pre-peak flexural stress period, resulting from the coarsening effect of direct current on SSWs’ interface to regulate and control of conductive pathway in concrete. This is the innovative demonstration that self-heating curing process can endow hybrid SSWs and SFs reinforced UHPC with stable/high self-sensing sensitivity to rapidly fabricate multifunctional/smart infrastructures with the abilities of structural health monitoring, snow and ice self-melting, and indoor heating.</div></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724009075\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724009075","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过加入混合不锈钢丝(SSWs)和钢纤维(SFs),开发具有自加热固化和自传感特性的超高性能混凝土(UHPC),以提高基础设施的安全性、功能/智能性和韧性。0.2 vol% 的微直径 SSW 已经可以与 SF 一起在 UHPC 内部形成重叠导电网络,从而降低电阻率,提高电能到焦耳热的高效转换率。由于场发射效应和 SSWs 的微观热膨胀,当施加 20 W 的输入功率并持续时,含有 0.2 vol% SSWs 和 1.6 vol% SFs 的混合 UHPC(W02F16)的电阻率首先从 45.1 Ω∙cm 减小到 8.3 Ω∙cm ,然后又减小到 7.88 Ω∙cm 。W02F16 试样自加热 73 分钟,表面温度达到 78.6 ℃,平均加热速率为 0.821 ℃/分钟,温差小于 11.6 ℃。同时,自加热固化 8 小时后,W02F16 的电阻率和灵敏度对应于弯曲应力峰值的分数变化可达 58.3 % 和 3.22 %/MPa,分别是标准固化 28 d 后的 2.1 倍和 3.6 倍。此外,自热养护 28 d 的 UHPC 复合材料具有更稳定、更灵敏的自感应性能,尤其是在弯曲应力峰值前期,这是由于直流电对 SSW 的界面产生了粗化效应,从而调节和控制了混凝土中的导电通路。这创新性地证明了自加热固化工艺可赋予混合 SSW 和 SFs 增强 UHPC 稳定/高自感应灵敏度,以快速制造具有结构健康监测、冰雪自融化和室内加热能力的多功能/智能基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-heating curing and its influence on self-sensing properties of ultra-high performance concrete with hybrid stainless steel wires and steel fibers
This study aims to develop ultra-high performance concrete (UHPC) with self-heating curing and self-sensing properties by incorporating hybrid stainless steel wires (SSWs) and steel fibers (SFs) to advance the safety, function/intelligence, and resilience of infrastructures. 0.2 vol% SSWs with micro diameter can already form overlapped conductive network inside UHPC together with SFs to decrease the electrical resistivity and enhance high-efficiency conversion rate from electric energy to Joule heat. As 20 W input power is applied and sustained, the electrical resistivity of UHPC with hybrid 0.2 vol% SSWs and 1.6 vol% SFs (W02F16) first decreases from 45.1 Ω∙cm to 8.3 Ω∙cm and then to 7.88 Ω∙cm due to the field emission effect and the microscopic thermal expansion of SSWs. The surface temperature of W02F16 specimens reaches 78.6 ℃ for 73 minutes self-heating with an average heating rate of 0.821 ℃/min and a temperature difference lower than 11.6 ℃. Meanwhile, the fractional change in electrical resistivity and sensitivity corresponding to peak flexural stress of W02F16 after 8 h self-heating curing can reach 58.3 % and 3.22 %/MPa, higher 2.1 and 3.6 times than that after 28 d standard curing. Furthermore, self-heating curing UHPC composites at 28 d possesses more stable and sensitive self-sensing performance especially within pre-peak flexural stress period, resulting from the coarsening effect of direct current on SSWs’ interface to regulate and control of conductive pathway in concrete. This is the innovative demonstration that self-heating curing process can endow hybrid SSWs and SFs reinforced UHPC with stable/high self-sensing sensitivity to rapidly fabricate multifunctional/smart infrastructures with the abilities of structural health monitoring, snow and ice self-melting, and indoor heating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
期刊最新文献
High-selectivity NIR amorphous silicon-based plasmonic photodetector at room temperature 2D beam steering using phased array of MEMS tunable grating couplers Focus-switchable piezoelectric actuator: A bionic thin-plate design inspired by conch structure Methods of fabrication and modeling of CMUTs – A review Effect of material anisotropy on the first-order vibration of piezoelectric oscillators in circular plate configurations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1