{"title":"6TiSCH IIoT 网络:综述","authors":"","doi":"10.1016/j.comnet.2024.110759","DOIUrl":null,"url":null,"abstract":"<div><div>Low-power and Lossy Networks (LLN) constitute an interconnected network of numerous resource-constrained nodes, forming a wireless mesh network. The Time slotted Channel Hopping (TSCH) mode, introduced as a revision of the Medium Access Control (MAC) section within the IEEE 802.15.4 standard, stands as an emerging standard for industrial automation and process control. In 2013, the Internet Engineering Task Force (IETF) established the IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) working group (WG), defining the IPv6 deterministic wireless network—6TiSCH. This development is pivotal for advancing the broader adoption of IPv6 in industrial standards and facilitating the convergence of operational technology (OT) and information technology (IT). As of July 2023, the primary documents encompassing architecture, configuration and parameters, and Minimum Scheduling Function for the 6TiSCH protocol stack have been completed, and the status of the WG has transitioned from active to concluded. Over the past decade, the academic community has extensively researched protocol stacks related to 6TiSCH. This paper furnishes a comprehensive survey of the architecture and developmental processes underlying the 6TiSCH network, encapsulating research achievements since its inception, and delineating the challenges and prospective directions for its future development.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"6TiSCH IIoT network: A review\",\"authors\":\"\",\"doi\":\"10.1016/j.comnet.2024.110759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low-power and Lossy Networks (LLN) constitute an interconnected network of numerous resource-constrained nodes, forming a wireless mesh network. The Time slotted Channel Hopping (TSCH) mode, introduced as a revision of the Medium Access Control (MAC) section within the IEEE 802.15.4 standard, stands as an emerging standard for industrial automation and process control. In 2013, the Internet Engineering Task Force (IETF) established the IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) working group (WG), defining the IPv6 deterministic wireless network—6TiSCH. This development is pivotal for advancing the broader adoption of IPv6 in industrial standards and facilitating the convergence of operational technology (OT) and information technology (IT). As of July 2023, the primary documents encompassing architecture, configuration and parameters, and Minimum Scheduling Function for the 6TiSCH protocol stack have been completed, and the status of the WG has transitioned from active to concluded. Over the past decade, the academic community has extensively researched protocol stacks related to 6TiSCH. This paper furnishes a comprehensive survey of the architecture and developmental processes underlying the 6TiSCH network, encapsulating research achievements since its inception, and delineating the challenges and prospective directions for its future development.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128624005917\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624005917","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Low-power and Lossy Networks (LLN) constitute an interconnected network of numerous resource-constrained nodes, forming a wireless mesh network. The Time slotted Channel Hopping (TSCH) mode, introduced as a revision of the Medium Access Control (MAC) section within the IEEE 802.15.4 standard, stands as an emerging standard for industrial automation and process control. In 2013, the Internet Engineering Task Force (IETF) established the IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) working group (WG), defining the IPv6 deterministic wireless network—6TiSCH. This development is pivotal for advancing the broader adoption of IPv6 in industrial standards and facilitating the convergence of operational technology (OT) and information technology (IT). As of July 2023, the primary documents encompassing architecture, configuration and parameters, and Minimum Scheduling Function for the 6TiSCH protocol stack have been completed, and the status of the WG has transitioned from active to concluded. Over the past decade, the academic community has extensively researched protocol stacks related to 6TiSCH. This paper furnishes a comprehensive survey of the architecture and developmental processes underlying the 6TiSCH network, encapsulating research achievements since its inception, and delineating the challenges and prospective directions for its future development.
期刊介绍:
Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.