熵产生的混合纳米材料流的 SAT 公式:修正的卡塔尼奥-克里斯托夫分析

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY Results in Engineering Pub Date : 2024-09-18 DOI:10.1016/j.rineng.2024.102895
Sohail A. Khan , Aneeta Razaq , Tasawar Hayat
{"title":"熵产生的混合纳米材料流的 SAT 公式:修正的卡塔尼奥-克里斯托夫分析","authors":"Sohail A. Khan ,&nbsp;Aneeta Razaq ,&nbsp;Tasawar Hayat","doi":"10.1016/j.rineng.2024.102895","DOIUrl":null,"url":null,"abstract":"<div><div>Heat transport phenomena involve various applications and fields like engineering, industry, pharmaceutical and coolant in machining, manufacturing etc. In view of such applications hydromagnetic entropy optimized flow of hybrid nanoliquid is organized. Porous space is deliberated by Darcy-Forchheimer model. Cobalt ferrite (<span><math><mrow><mi>C</mi><mi>o</mi><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow></math></span>) and ferric oxide (<span><math><mrow><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span>) nanoparticles are employed in conventional liquid (ethylene glycol) to form hybrid nanoliquid. Thermal analysis is carried out through development of heat flux based upon Cattaneo-Christov theory. Ohmic heating, heat generation and dissipation effects are discussed. Entropy optimization is under consideration. Nonlinear problems are transformed into non-dimensional ordinary system through adequate transformations. Governed system by Newton built in-shooting scheme is computed. Entropy rate, liquid flow and thermal distribution for nanofluid (<span><math><mrow><mi>C</mi><mi>o</mi><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub><mo>/</mo><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mn>6</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>) and hybrid nanoliquid (<span><math><mrow><mi>C</mi><mi>o</mi><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub><mo>+</mo><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub><mo>/</mo><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mn>6</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>) are explored. Numerical results of Nusselt number and skin friction coefficient versus influential variables for nanoliquid (<span><math><mrow><mi>C</mi><mi>o</mi><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub><mo>/</mo><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mn>6</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>) and hybrid nanoliquid (<span><math><mrow><mi>C</mi><mi>o</mi><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub><mo>+</mo><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub><mo>/</mo><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mn>6</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>) are studied. Higher magnetic field intensify entropy rate and temperature whereas opposite trend witnessed for velocity. An intensification in surface drag force occurs for magnetic and solid volume fraction variables. Larger thermal relaxation time variable leads to rise Nusselt number and temperature. Higher approximation of porosity variable corresponds to increase entropy rate while reverse impact observed for liquid flow.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"24 ","pages":"Article 102895"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590123024011502/pdfft?md5=c55e61a2fc7071eb76d0c4408ebe0e3a&pid=1-s2.0-S2590123024011502-main.pdf","citationCount":"0","resultStr":"{\"title\":\"SAT formulation for entropy generated hybrid nanomaterial flow: Modified Cattaneo-Christov analysis\",\"authors\":\"Sohail A. Khan ,&nbsp;Aneeta Razaq ,&nbsp;Tasawar Hayat\",\"doi\":\"10.1016/j.rineng.2024.102895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heat transport phenomena involve various applications and fields like engineering, industry, pharmaceutical and coolant in machining, manufacturing etc. In view of such applications hydromagnetic entropy optimized flow of hybrid nanoliquid is organized. Porous space is deliberated by Darcy-Forchheimer model. Cobalt ferrite (<span><math><mrow><mi>C</mi><mi>o</mi><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow></math></span>) and ferric oxide (<span><math><mrow><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></math></span>) nanoparticles are employed in conventional liquid (ethylene glycol) to form hybrid nanoliquid. Thermal analysis is carried out through development of heat flux based upon Cattaneo-Christov theory. Ohmic heating, heat generation and dissipation effects are discussed. Entropy optimization is under consideration. Nonlinear problems are transformed into non-dimensional ordinary system through adequate transformations. Governed system by Newton built in-shooting scheme is computed. Entropy rate, liquid flow and thermal distribution for nanofluid (<span><math><mrow><mi>C</mi><mi>o</mi><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub><mo>/</mo><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mn>6</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>) and hybrid nanoliquid (<span><math><mrow><mi>C</mi><mi>o</mi><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub><mo>+</mo><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub><mo>/</mo><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mn>6</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>) are explored. Numerical results of Nusselt number and skin friction coefficient versus influential variables for nanoliquid (<span><math><mrow><mi>C</mi><mi>o</mi><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub><mo>/</mo><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mn>6</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>) and hybrid nanoliquid (<span><math><mrow><mi>C</mi><mi>o</mi><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>4</mn></msub><mo>+</mo><mi>F</mi><msub><mi>e</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub><mo>/</mo><msub><mi>C</mi><mn>2</mn></msub><msub><mi>H</mi><mn>6</mn></msub><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span>) are studied. Higher magnetic field intensify entropy rate and temperature whereas opposite trend witnessed for velocity. An intensification in surface drag force occurs for magnetic and solid volume fraction variables. Larger thermal relaxation time variable leads to rise Nusselt number and temperature. Higher approximation of porosity variable corresponds to increase entropy rate while reverse impact observed for liquid flow.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"24 \",\"pages\":\"Article 102895\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590123024011502/pdfft?md5=c55e61a2fc7071eb76d0c4408ebe0e3a&pid=1-s2.0-S2590123024011502-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123024011502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024011502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热传输现象涉及各种应用和领域,如工程、工业、制药以及机械加工和制造中的冷却剂等。鉴于这些应用,我们组织了混合纳米液体的水磁熵优化流动。多孔空间由达西-福克海默(Darcy-Forchheimer)模型计算。在传统液体(乙二醇)中加入钴铁氧体(CoFe2O4)和氧化铁(Fe2O3)纳米粒子,形成混合纳米液体。根据卡塔尼奥-克里斯托夫(Cattaneo-Christov)理论开发的热通量进行了热分析。讨论了欧姆加热、发热和耗散效应。还考虑了熵优化问题。通过适当的转换,非线性问题被转化为非维度普通系统。通过牛顿建立的内射方案计算出受控系统。探讨了纳米流体(CoFe2O4/C2H6O2)和混合纳米液体(CoFe2O4+Fe2O3/C2H6O2)的熵率、液体流动和热分布。研究了纳米液体(CoFe2O4/C2H6O2)和混合纳米液体(CoFe2O4+Fe2O3/C2H6O2)的努塞尔特数和皮肤摩擦系数随影响变量变化的数值结果。磁场越大,熵率和温度越高,而速度则呈相反趋势。磁场和固体体积分数变量会增强表面阻力。热弛豫时间变量越大,努塞尔特数和温度越高。孔隙率变量的近似值越大,熵率越高,而液体流动的近似值则与之相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAT formulation for entropy generated hybrid nanomaterial flow: Modified Cattaneo-Christov analysis
Heat transport phenomena involve various applications and fields like engineering, industry, pharmaceutical and coolant in machining, manufacturing etc. In view of such applications hydromagnetic entropy optimized flow of hybrid nanoliquid is organized. Porous space is deliberated by Darcy-Forchheimer model. Cobalt ferrite (CoFe2O4) and ferric oxide (Fe2O3) nanoparticles are employed in conventional liquid (ethylene glycol) to form hybrid nanoliquid. Thermal analysis is carried out through development of heat flux based upon Cattaneo-Christov theory. Ohmic heating, heat generation and dissipation effects are discussed. Entropy optimization is under consideration. Nonlinear problems are transformed into non-dimensional ordinary system through adequate transformations. Governed system by Newton built in-shooting scheme is computed. Entropy rate, liquid flow and thermal distribution for nanofluid (CoFe2O4/C2H6O2) and hybrid nanoliquid (CoFe2O4+Fe2O3/C2H6O2) are explored. Numerical results of Nusselt number and skin friction coefficient versus influential variables for nanoliquid (CoFe2O4/C2H6O2) and hybrid nanoliquid (CoFe2O4+Fe2O3/C2H6O2) are studied. Higher magnetic field intensify entropy rate and temperature whereas opposite trend witnessed for velocity. An intensification in surface drag force occurs for magnetic and solid volume fraction variables. Larger thermal relaxation time variable leads to rise Nusselt number and temperature. Higher approximation of porosity variable corresponds to increase entropy rate while reverse impact observed for liquid flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
期刊最新文献
Nano biosensors: Classification, electrochemistry, nanostructures, and optical properties Autoclaved aerated concrete in reinforced building applications: A systematic review of AAC/RAAC in the last 40+ years An overview of the research on the correlation between solar energy utilization potential and spatial morphology Photonics in offshore wind energy system development: A systematic review Advancements and applications of smart contact lenses: A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1