ST2SI:通过视觉转换器利用空间交互进行图像风格转换

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computers & Graphics-Uk Pub Date : 2024-09-16 DOI:10.1016/j.cag.2024.104084
Wenshu Li , Yinliang Chen , Xiaoying Guo , Xiaoyu He
{"title":"ST2SI:通过视觉转换器利用空间交互进行图像风格转换","authors":"Wenshu Li ,&nbsp;Yinliang Chen ,&nbsp;Xiaoying Guo ,&nbsp;Xiaoyu He","doi":"10.1016/j.cag.2024.104084","DOIUrl":null,"url":null,"abstract":"<div><div>While retaining the original content structure, image style transfer uses style image to render it to obtain stylized images with artistic features. Because the content image contains different detail units and the style image has various style patterns, it is easy to cause the distortion of the stylized image. We proposes a new Style Transfer based on Vision Transformer using Spatial Interaction (ST2SI), which takes advantage of Spatial Interactive Convolution (SIC) and Spatial Unit Attention (SUA) to further enhance the content and style representation, so that the encoder can not only better learn the features of the content domain and the style domain, but also maintain the structural integrity of the image content and the effective integration of style features. Concretely, the high-order spatial interaction ability of Spatial Interactive Convolution can capture complex style patterns, and Spatial Unit Attention can balance the content information of different detail units through the change of attention weight, thus solving the problem of image distortion. Comprehensive qualitative and quantitative experiments prove the efficacy of our approach.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104084"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ST2SI: Image Style Transfer via Vision Transformer using Spatial Interaction\",\"authors\":\"Wenshu Li ,&nbsp;Yinliang Chen ,&nbsp;Xiaoying Guo ,&nbsp;Xiaoyu He\",\"doi\":\"10.1016/j.cag.2024.104084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While retaining the original content structure, image style transfer uses style image to render it to obtain stylized images with artistic features. Because the content image contains different detail units and the style image has various style patterns, it is easy to cause the distortion of the stylized image. We proposes a new Style Transfer based on Vision Transformer using Spatial Interaction (ST2SI), which takes advantage of Spatial Interactive Convolution (SIC) and Spatial Unit Attention (SUA) to further enhance the content and style representation, so that the encoder can not only better learn the features of the content domain and the style domain, but also maintain the structural integrity of the image content and the effective integration of style features. Concretely, the high-order spatial interaction ability of Spatial Interactive Convolution can capture complex style patterns, and Spatial Unit Attention can balance the content information of different detail units through the change of attention weight, thus solving the problem of image distortion. Comprehensive qualitative and quantitative experiments prove the efficacy of our approach.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104084\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009784932400219X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009784932400219X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

图像风格转换在保留原有内容结构的同时,利用风格图像对其进行渲染,从而获得具有艺术特色的风格化图像。由于内容图像包含不同的细节单元,而风格图像具有各种风格模式,因此很容易造成风格化图像的失真。我们提出了一种新的基于空间交互视觉转换器的风格转换(ST2SI),利用空间交互卷积(SIC)和空间单元注意(SUA)的优势,进一步增强内容和风格的表示,使编码器不仅能更好地学习内容域和风格域的特征,还能保持图像内容结构的完整性和风格特征的有效融合。具体来说,空间交互卷积的高阶空间交互能力可以捕捉复杂的风格模式,而空间单元注意力则可以通过注意力权重的变化平衡不同细节单元的内容信息,从而解决图像失真的问题。全面的定性和定量实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ST2SI: Image Style Transfer via Vision Transformer using Spatial Interaction
While retaining the original content structure, image style transfer uses style image to render it to obtain stylized images with artistic features. Because the content image contains different detail units and the style image has various style patterns, it is easy to cause the distortion of the stylized image. We proposes a new Style Transfer based on Vision Transformer using Spatial Interaction (ST2SI), which takes advantage of Spatial Interactive Convolution (SIC) and Spatial Unit Attention (SUA) to further enhance the content and style representation, so that the encoder can not only better learn the features of the content domain and the style domain, but also maintain the structural integrity of the image content and the effective integration of style features. Concretely, the high-order spatial interaction ability of Spatial Interactive Convolution can capture complex style patterns, and Spatial Unit Attention can balance the content information of different detail units through the change of attention weight, thus solving the problem of image distortion. Comprehensive qualitative and quantitative experiments prove the efficacy of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
期刊最新文献
Enhancing Visual Analytics systems with guidance: A task-driven methodology Learning geometric complexes for 3D shape classification RenalViz: Visual analysis of cohorts with chronic kidney disease Enhancing semantic mapping in text-to-image diffusion via Gather-and-Bind CGLight: An effective indoor illumination estimation method based on improved convmixer and GauGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1