中国黄土高原旱地梯田植树造林对水收支的影响

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY Ecological Engineering Pub Date : 2024-09-19 DOI:10.1016/j.ecoleng.2024.107405
Yue Huang , Wei Wei , Shengnan Chen , Liding Chen
{"title":"中国黄土高原旱地梯田植树造林对水收支的影响","authors":"Yue Huang ,&nbsp;Wei Wei ,&nbsp;Shengnan Chen ,&nbsp;Liding Chen","doi":"10.1016/j.ecoleng.2024.107405","DOIUrl":null,"url":null,"abstract":"<div><div>Terracing engineering and vegetation plantation have been implemented in many water-limited areas, aiming to reduce the effect of drought, conserve water, and promote ecosystem restoration. However, due to the complexities of slope structure, the major hydrologic processes controlling the water balance of terraces are still unclear. To further quantify the role of terraces on water retention in the stand scale, in a normal year (2015) and a dry year (2016), we compared the water balance for the combination of <em>Platycladus orientalis</em> with zig terrace (PZ), fish scale pits (PF), and natural slope (PN) in a typical loess hilly area of China. Our results indicated that terracing was an effective way to increase water retention and reduce runoff. After the growing season, compared with PN, terraced fields enhanced the water budget with 13.6–21.3 mm for PZ and 2.4–11.7 mm for PF. In addition, terraced fields generated less runoff (a reduction of 45.3–60.8 % for PZ and 19.6–26.6 % for PF) and more soil water storage (an increase of 18.5–24.1 % for PZ and 13.6–14.7 % for PF) than the natural slope. Overall, the water budget of all plots was positive (29.6 mm for PZ &gt; 20.0 mm for PF &gt; 8.3 mm for PN) in the normal year (2015) and negative (−49.6 mm for PZ &gt; −60.8 mm for PF &gt; −63.2 mm for PN) in the dry year (2016). Our results suggest that precipitation is still the primary factor affecting the water budget in woodlands, and terracing measures can help to improve the utilization of precipitation and enhance soil water retention in the Loess Plateau.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"209 ","pages":"Article 107405"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of terracing with Platycladus orientalis plantations on water budget in the dryland of Loess Plateau in China\",\"authors\":\"Yue Huang ,&nbsp;Wei Wei ,&nbsp;Shengnan Chen ,&nbsp;Liding Chen\",\"doi\":\"10.1016/j.ecoleng.2024.107405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Terracing engineering and vegetation plantation have been implemented in many water-limited areas, aiming to reduce the effect of drought, conserve water, and promote ecosystem restoration. However, due to the complexities of slope structure, the major hydrologic processes controlling the water balance of terraces are still unclear. To further quantify the role of terraces on water retention in the stand scale, in a normal year (2015) and a dry year (2016), we compared the water balance for the combination of <em>Platycladus orientalis</em> with zig terrace (PZ), fish scale pits (PF), and natural slope (PN) in a typical loess hilly area of China. Our results indicated that terracing was an effective way to increase water retention and reduce runoff. After the growing season, compared with PN, terraced fields enhanced the water budget with 13.6–21.3 mm for PZ and 2.4–11.7 mm for PF. In addition, terraced fields generated less runoff (a reduction of 45.3–60.8 % for PZ and 19.6–26.6 % for PF) and more soil water storage (an increase of 18.5–24.1 % for PZ and 13.6–14.7 % for PF) than the natural slope. Overall, the water budget of all plots was positive (29.6 mm for PZ &gt; 20.0 mm for PF &gt; 8.3 mm for PN) in the normal year (2015) and negative (−49.6 mm for PZ &gt; −60.8 mm for PF &gt; −63.2 mm for PN) in the dry year (2016). Our results suggest that precipitation is still the primary factor affecting the water budget in woodlands, and terracing measures can help to improve the utilization of precipitation and enhance soil water retention in the Loess Plateau.</div></div>\",\"PeriodicalId\":11490,\"journal\":{\"name\":\"Ecological Engineering\",\"volume\":\"209 \",\"pages\":\"Article 107405\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925857424002301\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857424002301","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

许多水资源有限的地区都实施了梯田工程和植被种植,旨在减少干旱影响、节约用水和促进生态系统恢复。然而,由于坡面结构复杂,控制梯田水分平衡的主要水文过程尚不清楚。为了进一步量化梯田在林分尺度上的保水作用,我们在正常年份(2015 年)和干旱年份(2016 年),比较了中国典型黄土丘陵地区东方桔梗与人字形梯田(PZ)、鱼鳞坑(PF)和自然坡(PN)组合的水平衡。我们的研究结果表明,修筑梯田是增加蓄水量和减少径流的有效方法。生长季结束后,与自然坡地相比,梯田提高了水量收支,PZ 为 13.6-21.3 毫米,PF 为 2.4-11.7 毫米。此外,与自然坡地相比,梯田产生的径流更少(PZ 减少了 45.3-60.8%,PF 减少了 19.6-26.6%),土壤蓄水量更大(PZ 增加了 18.5-24.1%,PF 增加了 13.6-14.7%)。总体而言,所有地块的水分预算在正常年份(2015 年)为正值(PZ 为 29.6 毫米;PF 为 20.0 毫米;PN 为 8.3 毫米),在干旱年份(2016 年)为负值(PZ 为-49.6 毫米;PF 为-60.8 毫米;PN 为-63.2 毫米)。我们的研究结果表明,降水仍然是影响林地水分平衡的主要因素,而梯田措施有助于提高黄土高原降水的利用率和土壤的保水性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of terracing with Platycladus orientalis plantations on water budget in the dryland of Loess Plateau in China
Terracing engineering and vegetation plantation have been implemented in many water-limited areas, aiming to reduce the effect of drought, conserve water, and promote ecosystem restoration. However, due to the complexities of slope structure, the major hydrologic processes controlling the water balance of terraces are still unclear. To further quantify the role of terraces on water retention in the stand scale, in a normal year (2015) and a dry year (2016), we compared the water balance for the combination of Platycladus orientalis with zig terrace (PZ), fish scale pits (PF), and natural slope (PN) in a typical loess hilly area of China. Our results indicated that terracing was an effective way to increase water retention and reduce runoff. After the growing season, compared with PN, terraced fields enhanced the water budget with 13.6–21.3 mm for PZ and 2.4–11.7 mm for PF. In addition, terraced fields generated less runoff (a reduction of 45.3–60.8 % for PZ and 19.6–26.6 % for PF) and more soil water storage (an increase of 18.5–24.1 % for PZ and 13.6–14.7 % for PF) than the natural slope. Overall, the water budget of all plots was positive (29.6 mm for PZ > 20.0 mm for PF > 8.3 mm for PN) in the normal year (2015) and negative (−49.6 mm for PZ > −60.8 mm for PF > −63.2 mm for PN) in the dry year (2016). Our results suggest that precipitation is still the primary factor affecting the water budget in woodlands, and terracing measures can help to improve the utilization of precipitation and enhance soil water retention in the Loess Plateau.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Engineering
Ecological Engineering 环境科学-工程:环境
CiteScore
8.00
自引率
5.30%
发文量
293
审稿时长
57 days
期刊介绍: Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers. Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.
期刊最新文献
Effects of restorative treatments confirmed in a restored pond Living in a material world: Support for the use of natural and alternative materials in coastal restoration and living shorelines Editorial Board Long term performance of Nature-Based Solutions as decentralized wastewater treatment: a case study of a retail store in southern Italy Are floating mangrove breakwaters effective for wave attenuation? - A Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1