{"title":"利用微磁模拟精确计算磁性矿物颗粒上的磁力","authors":"","doi":"10.1016/j.mineng.2024.109001","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic separation is a primary method for processing iron ore and plays a crucial role in both current beneficiation practices and other fields. Extensive research has been conducted on the motion behavior of magnetic particles within magnetic separation equipment. However, force analysis, particularly the calculation of magnetic forces, remains imprecise when dealing with irregularly shaped particles. Accurate prediction of magnetic particle behavior requires precise magnetic force calculations. This study introduces micromagnetic simulations to accurately compute the magnetic forces on irregular magnetic particles. Micromagnetic simulations can determine the precise magnetic moments and magnetic induction intensities within each microelement of the particle. The results of these simulations will be validated using magnetic force microscopy (MFM). The findings indicate that traditional magnetic force calculations deviate from the precise calculations presented in this study. For irregular particles, the computational errors in repulsive and attractive forces are 770% and 576% higher, respectively, compared to spherical particles. This underscores the necessity of considering particle shape in realistic magnetic force calculations. Additionally, both the MFM measurement images and the simulated magnetic force maps exhibit bright and dark regions correlated with particle shape, demonstrating that micromagnetic simulation results can be verified through MFM measurements. This paper proposes an experimentally verifiable method for accurately calculating the magnetic forces on magnetic particles using micromagnetic simulations, which holds significant implications for designing more efficient and precise magnetic separation equipment.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate calculation of magnetic forces on magnetic mineral particles using micromagnetic simulations\",\"authors\":\"\",\"doi\":\"10.1016/j.mineng.2024.109001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnetic separation is a primary method for processing iron ore and plays a crucial role in both current beneficiation practices and other fields. Extensive research has been conducted on the motion behavior of magnetic particles within magnetic separation equipment. However, force analysis, particularly the calculation of magnetic forces, remains imprecise when dealing with irregularly shaped particles. Accurate prediction of magnetic particle behavior requires precise magnetic force calculations. This study introduces micromagnetic simulations to accurately compute the magnetic forces on irregular magnetic particles. Micromagnetic simulations can determine the precise magnetic moments and magnetic induction intensities within each microelement of the particle. The results of these simulations will be validated using magnetic force microscopy (MFM). The findings indicate that traditional magnetic force calculations deviate from the precise calculations presented in this study. For irregular particles, the computational errors in repulsive and attractive forces are 770% and 576% higher, respectively, compared to spherical particles. This underscores the necessity of considering particle shape in realistic magnetic force calculations. Additionally, both the MFM measurement images and the simulated magnetic force maps exhibit bright and dark regions correlated with particle shape, demonstrating that micromagnetic simulation results can be verified through MFM measurements. This paper proposes an experimentally verifiable method for accurately calculating the magnetic forces on magnetic particles using micromagnetic simulations, which holds significant implications for designing more efficient and precise magnetic separation equipment.</div></div>\",\"PeriodicalId\":18594,\"journal\":{\"name\":\"Minerals Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0892687524004308\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687524004308","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Accurate calculation of magnetic forces on magnetic mineral particles using micromagnetic simulations
Magnetic separation is a primary method for processing iron ore and plays a crucial role in both current beneficiation practices and other fields. Extensive research has been conducted on the motion behavior of magnetic particles within magnetic separation equipment. However, force analysis, particularly the calculation of magnetic forces, remains imprecise when dealing with irregularly shaped particles. Accurate prediction of magnetic particle behavior requires precise magnetic force calculations. This study introduces micromagnetic simulations to accurately compute the magnetic forces on irregular magnetic particles. Micromagnetic simulations can determine the precise magnetic moments and magnetic induction intensities within each microelement of the particle. The results of these simulations will be validated using magnetic force microscopy (MFM). The findings indicate that traditional magnetic force calculations deviate from the precise calculations presented in this study. For irregular particles, the computational errors in repulsive and attractive forces are 770% and 576% higher, respectively, compared to spherical particles. This underscores the necessity of considering particle shape in realistic magnetic force calculations. Additionally, both the MFM measurement images and the simulated magnetic force maps exhibit bright and dark regions correlated with particle shape, demonstrating that micromagnetic simulation results can be verified through MFM measurements. This paper proposes an experimentally verifiable method for accurately calculating the magnetic forces on magnetic particles using micromagnetic simulations, which holds significant implications for designing more efficient and precise magnetic separation equipment.
期刊介绍:
The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.