{"title":"通过 Na2SO4 焙烧和水浸法从富锂高岭土资源中提取锂","authors":"","doi":"10.1016/j.mineng.2024.109004","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, lithium extraction from a Li-rich kaolin is performed by roasting with Na<sub>2</sub>SO<sub>4</sub> and water leaching. The thermal analysis of the Li-rich kaolin is characterized by TGA and DSC analysis. The comparison tests are conducted through roasting alone and H<sub>2</sub>SO<sub>4</sub> leaching, in the aspects of ions concentration, Li recovery and solid wastes. Under Na<sub>2</sub>SO<sub>4</sub> roasting and water leaching, 84 % of Li is leached out, which is a little lower than the H<sub>2</sub>SO<sub>4</sub> method. Meanwhile, the leached Al and Fe are very low, which is highly beneficial to the purification process. After precipitation, a Li<sub>2</sub>CO<sub>3</sub> product of 95 % in purity is obtained. However, for the H<sub>2</sub>SO<sub>4</sub> method, Li<sub>2</sub>CO<sub>3</sub> is hardly obtained because the Li is mainly lost in the purification process. And the process pH is much lower, leading to a high amount of solid wastes. This study might give a clue for the lithium recovery from Li-rich kaolin resources.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium extraction from a Li-rich kaolin resource through Na2SO4 roasting and water leaching\",\"authors\":\"\",\"doi\":\"10.1016/j.mineng.2024.109004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, lithium extraction from a Li-rich kaolin is performed by roasting with Na<sub>2</sub>SO<sub>4</sub> and water leaching. The thermal analysis of the Li-rich kaolin is characterized by TGA and DSC analysis. The comparison tests are conducted through roasting alone and H<sub>2</sub>SO<sub>4</sub> leaching, in the aspects of ions concentration, Li recovery and solid wastes. Under Na<sub>2</sub>SO<sub>4</sub> roasting and water leaching, 84 % of Li is leached out, which is a little lower than the H<sub>2</sub>SO<sub>4</sub> method. Meanwhile, the leached Al and Fe are very low, which is highly beneficial to the purification process. After precipitation, a Li<sub>2</sub>CO<sub>3</sub> product of 95 % in purity is obtained. However, for the H<sub>2</sub>SO<sub>4</sub> method, Li<sub>2</sub>CO<sub>3</sub> is hardly obtained because the Li is mainly lost in the purification process. And the process pH is much lower, leading to a high amount of solid wastes. This study might give a clue for the lithium recovery from Li-rich kaolin resources.</div></div>\",\"PeriodicalId\":18594,\"journal\":{\"name\":\"Minerals Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0892687524004333\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687524004333","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Lithium extraction from a Li-rich kaolin resource through Na2SO4 roasting and water leaching
In this study, lithium extraction from a Li-rich kaolin is performed by roasting with Na2SO4 and water leaching. The thermal analysis of the Li-rich kaolin is characterized by TGA and DSC analysis. The comparison tests are conducted through roasting alone and H2SO4 leaching, in the aspects of ions concentration, Li recovery and solid wastes. Under Na2SO4 roasting and water leaching, 84 % of Li is leached out, which is a little lower than the H2SO4 method. Meanwhile, the leached Al and Fe are very low, which is highly beneficial to the purification process. After precipitation, a Li2CO3 product of 95 % in purity is obtained. However, for the H2SO4 method, Li2CO3 is hardly obtained because the Li is mainly lost in the purification process. And the process pH is much lower, leading to a high amount of solid wastes. This study might give a clue for the lithium recovery from Li-rich kaolin resources.
期刊介绍:
The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.