Yongqiang Wei , Huanlun Tong , Shaoyuan Li , Zhengxing Wang , Xi Yang , Xiuhua Chen , Fengshuo Xi , Wenhui Ma , Xinjie Bai
{"title":"通过 TBAB-SDS 复合添加剂增强铜辅助化学蚀刻的硅表面纹理形成","authors":"Yongqiang Wei , Huanlun Tong , Shaoyuan Li , Zhengxing Wang , Xi Yang , Xiuhua Chen , Fengshuo Xi , Wenhui Ma , Xinjie Bai","doi":"10.1016/j.solmat.2024.113185","DOIUrl":null,"url":null,"abstract":"<div><div>Uneven etching and low fabrication efficiency impede the large-scale applications of copper-assisted chemical etching (Cu-ACE) for texturing light-trapping structures on the surface of silicon wafers. To address this, a composite additive composed of tetrabutylammonium bromide (TBAB) and sodium dodecyl sulfate (SDS) was introduced into the Cu-ACE system. The results indicated that TBAB accelerated the etching rate and improved the texturing uniformity, while SDS enlarged the size of the formed structures and enhanced their ultraviolet light absorption efficiency. The prepared inverted pyramid structure reduced the reflectivity of the silicon wafer surface to 3.8 %, thus exhibiting efficient light-trapping capabilities. The etching evolution under various TBAB concentrations and different HF/H<sub>2</sub>O<sub>2</sub> ratios was studied by characterizing the surface contact angle and copper deposition morphology. The results indicated that electrostatic attraction between TBAB and dangling bonds on the silicon wafer surface enhanced material transfer at the reaction interface and changed the electron distribution around dangling bonds, thus facilitating the catalytic metal attack on these bonds. The copper ion reactivity was decreased due to complexation between the dissociated alkyl sulfate ions of SDS and copper ions, which favored the deposition of larger copper nanoparticles during etching, thereby increasing the size of structures. This research offers valuable insights to enable the large-scale applications of Cu-ACE.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113185"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon surface texturing via TBAB-SDS composite additives enhanced copper-assisted chemical etching\",\"authors\":\"Yongqiang Wei , Huanlun Tong , Shaoyuan Li , Zhengxing Wang , Xi Yang , Xiuhua Chen , Fengshuo Xi , Wenhui Ma , Xinjie Bai\",\"doi\":\"10.1016/j.solmat.2024.113185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Uneven etching and low fabrication efficiency impede the large-scale applications of copper-assisted chemical etching (Cu-ACE) for texturing light-trapping structures on the surface of silicon wafers. To address this, a composite additive composed of tetrabutylammonium bromide (TBAB) and sodium dodecyl sulfate (SDS) was introduced into the Cu-ACE system. The results indicated that TBAB accelerated the etching rate and improved the texturing uniformity, while SDS enlarged the size of the formed structures and enhanced their ultraviolet light absorption efficiency. The prepared inverted pyramid structure reduced the reflectivity of the silicon wafer surface to 3.8 %, thus exhibiting efficient light-trapping capabilities. The etching evolution under various TBAB concentrations and different HF/H<sub>2</sub>O<sub>2</sub> ratios was studied by characterizing the surface contact angle and copper deposition morphology. The results indicated that electrostatic attraction between TBAB and dangling bonds on the silicon wafer surface enhanced material transfer at the reaction interface and changed the electron distribution around dangling bonds, thus facilitating the catalytic metal attack on these bonds. The copper ion reactivity was decreased due to complexation between the dissociated alkyl sulfate ions of SDS and copper ions, which favored the deposition of larger copper nanoparticles during etching, thereby increasing the size of structures. This research offers valuable insights to enable the large-scale applications of Cu-ACE.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"278 \",\"pages\":\"Article 113185\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824004975\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824004975","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Silicon surface texturing via TBAB-SDS composite additives enhanced copper-assisted chemical etching
Uneven etching and low fabrication efficiency impede the large-scale applications of copper-assisted chemical etching (Cu-ACE) for texturing light-trapping structures on the surface of silicon wafers. To address this, a composite additive composed of tetrabutylammonium bromide (TBAB) and sodium dodecyl sulfate (SDS) was introduced into the Cu-ACE system. The results indicated that TBAB accelerated the etching rate and improved the texturing uniformity, while SDS enlarged the size of the formed structures and enhanced their ultraviolet light absorption efficiency. The prepared inverted pyramid structure reduced the reflectivity of the silicon wafer surface to 3.8 %, thus exhibiting efficient light-trapping capabilities. The etching evolution under various TBAB concentrations and different HF/H2O2 ratios was studied by characterizing the surface contact angle and copper deposition morphology. The results indicated that electrostatic attraction between TBAB and dangling bonds on the silicon wafer surface enhanced material transfer at the reaction interface and changed the electron distribution around dangling bonds, thus facilitating the catalytic metal attack on these bonds. The copper ion reactivity was decreased due to complexation between the dissociated alkyl sulfate ions of SDS and copper ions, which favored the deposition of larger copper nanoparticles during etching, thereby increasing the size of structures. This research offers valuable insights to enable the large-scale applications of Cu-ACE.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.