Qianjiao Xu , Bing Cui , Pengcheng Wang , Yuanqing Xia , Yonghe Zhang
{"title":"利用基于模型的广义扩展状态观测器进行无阻力航天器的有限频域 H∞ 混合控制设计","authors":"Qianjiao Xu , Bing Cui , Pengcheng Wang , Yuanqing Xia , Yonghe Zhang","doi":"10.1016/j.conengprac.2024.106096","DOIUrl":null,"url":null,"abstract":"<div><div>For the drag-free spacecraft on the space-borne gravitational wave detection mission, the drag-free control scheme is considered one of the core technologies to achieve the ultra-quiet-stable control requirements in the measurement bandwidth (MBW). This high-precision control performance is constrained by actuation noises, measurement noises, environmental disturbances, and the limited control bandwidth. In order to address these difficulties, a finite frequency domain double closed-loop control (DCC) framework with the parameter design method is proposed in this paper. First, a model-based generalized extended state observer (MGESO) framework is proposed. This framework integrates plant estimation and disturbance estimation components to accurately estimate those disturbances and noises with lower orders. Then, based on the MGESO framework, the DCC framework is proposed for drag-free control. Within the control structure, the performance specifications can be directly divided into the inner and outer loop performances, which reduces the complexity of the parameter tuning. Subsequently, a finite frequency domain parameter tuning method for the DCC framework is provided, leveraging the generalized Kalman-Yakubovich-Popov (GKYP) lemma. The introduction of the sensitive frequency domain as a design constraint can result in a reduction of control expenditures. Finally, the effectiveness and superiority of the DCC structure are verified in the drag-free spacecraft hardware-in-loop experiment platform.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"153 ","pages":"Article 106096"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite frequency domain H∞ hybrid control design of drag-free spacecraft with model-based generalized extended state observer\",\"authors\":\"Qianjiao Xu , Bing Cui , Pengcheng Wang , Yuanqing Xia , Yonghe Zhang\",\"doi\":\"10.1016/j.conengprac.2024.106096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the drag-free spacecraft on the space-borne gravitational wave detection mission, the drag-free control scheme is considered one of the core technologies to achieve the ultra-quiet-stable control requirements in the measurement bandwidth (MBW). This high-precision control performance is constrained by actuation noises, measurement noises, environmental disturbances, and the limited control bandwidth. In order to address these difficulties, a finite frequency domain double closed-loop control (DCC) framework with the parameter design method is proposed in this paper. First, a model-based generalized extended state observer (MGESO) framework is proposed. This framework integrates plant estimation and disturbance estimation components to accurately estimate those disturbances and noises with lower orders. Then, based on the MGESO framework, the DCC framework is proposed for drag-free control. Within the control structure, the performance specifications can be directly divided into the inner and outer loop performances, which reduces the complexity of the parameter tuning. Subsequently, a finite frequency domain parameter tuning method for the DCC framework is provided, leveraging the generalized Kalman-Yakubovich-Popov (GKYP) lemma. The introduction of the sensitive frequency domain as a design constraint can result in a reduction of control expenditures. Finally, the effectiveness and superiority of the DCC structure are verified in the drag-free spacecraft hardware-in-loop experiment platform.</div></div>\",\"PeriodicalId\":50615,\"journal\":{\"name\":\"Control Engineering Practice\",\"volume\":\"153 \",\"pages\":\"Article 106096\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering Practice\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967066124002557\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002557","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Finite frequency domain H∞ hybrid control design of drag-free spacecraft with model-based generalized extended state observer
For the drag-free spacecraft on the space-borne gravitational wave detection mission, the drag-free control scheme is considered one of the core technologies to achieve the ultra-quiet-stable control requirements in the measurement bandwidth (MBW). This high-precision control performance is constrained by actuation noises, measurement noises, environmental disturbances, and the limited control bandwidth. In order to address these difficulties, a finite frequency domain double closed-loop control (DCC) framework with the parameter design method is proposed in this paper. First, a model-based generalized extended state observer (MGESO) framework is proposed. This framework integrates plant estimation and disturbance estimation components to accurately estimate those disturbances and noises with lower orders. Then, based on the MGESO framework, the DCC framework is proposed for drag-free control. Within the control structure, the performance specifications can be directly divided into the inner and outer loop performances, which reduces the complexity of the parameter tuning. Subsequently, a finite frequency domain parameter tuning method for the DCC framework is provided, leveraging the generalized Kalman-Yakubovich-Popov (GKYP) lemma. The introduction of the sensitive frequency domain as a design constraint can result in a reduction of control expenditures. Finally, the effectiveness and superiority of the DCC structure are verified in the drag-free spacecraft hardware-in-loop experiment platform.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.