Mingfu Gao , Yang Liu , Hai Huang , Sanchuan Yu , Doufeng Wu , Congjie Gao
{"title":"简便、可控的双步改性,增强聚偏氟乙烯膜的防污性能","authors":"Mingfu Gao , Yang Liu , Hai Huang , Sanchuan Yu , Doufeng Wu , Congjie Gao","doi":"10.1016/j.memsci.2024.123358","DOIUrl":null,"url":null,"abstract":"<div><div>Water scarcity and pollution pose significant challenges, necessitating advancements in water treatment technologies. Among various solutions, ultrafiltration membranes, especially those crafted from polyvinylidene fluoride (PVDF), are favored for their mechanical robustness and chemical stability. However, their practical application is often limited by severe membrane fouling due to the inherent hydrophobicity of PVDF. This project introduces a straightforward, controlled method to enhance the anti-fouling properties of PVDF membranes, utilizing a blend of cellulose acetate (CA). The process involves a two-step modification of hydrolysis followed by quaternization, effectively increasing hydroxyl group presence and facilitating subsequent chemical reactions. The optimized membranes achieve a dynamic water contact angle of 0° within 30 s and maintain an electroneutral surface at pH 7.1. With a mean pore size reduction from 28.6 nm to 23.9 nm and an impressive drop in the irreversible fouling ratio from 36.9 % to 0.3 %, these modifications markedly improve the anti-fouling performance. This research demonstrates significant potential for enhancing the functionality of PVDF ultrafiltration membranes through post-fabrication modifications, offering significant benefits for water treatment applications.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"713 ","pages":"Article 123358"},"PeriodicalIF":8.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile and controlled dual-step modification with enhanced anti-fouling performance in polyvinylidene fluoride membranes\",\"authors\":\"Mingfu Gao , Yang Liu , Hai Huang , Sanchuan Yu , Doufeng Wu , Congjie Gao\",\"doi\":\"10.1016/j.memsci.2024.123358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water scarcity and pollution pose significant challenges, necessitating advancements in water treatment technologies. Among various solutions, ultrafiltration membranes, especially those crafted from polyvinylidene fluoride (PVDF), are favored for their mechanical robustness and chemical stability. However, their practical application is often limited by severe membrane fouling due to the inherent hydrophobicity of PVDF. This project introduces a straightforward, controlled method to enhance the anti-fouling properties of PVDF membranes, utilizing a blend of cellulose acetate (CA). The process involves a two-step modification of hydrolysis followed by quaternization, effectively increasing hydroxyl group presence and facilitating subsequent chemical reactions. The optimized membranes achieve a dynamic water contact angle of 0° within 30 s and maintain an electroneutral surface at pH 7.1. With a mean pore size reduction from 28.6 nm to 23.9 nm and an impressive drop in the irreversible fouling ratio from 36.9 % to 0.3 %, these modifications markedly improve the anti-fouling performance. This research demonstrates significant potential for enhancing the functionality of PVDF ultrafiltration membranes through post-fabrication modifications, offering significant benefits for water treatment applications.</div></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":\"713 \",\"pages\":\"Article 123358\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738824009529\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824009529","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Facile and controlled dual-step modification with enhanced anti-fouling performance in polyvinylidene fluoride membranes
Water scarcity and pollution pose significant challenges, necessitating advancements in water treatment technologies. Among various solutions, ultrafiltration membranes, especially those crafted from polyvinylidene fluoride (PVDF), are favored for their mechanical robustness and chemical stability. However, their practical application is often limited by severe membrane fouling due to the inherent hydrophobicity of PVDF. This project introduces a straightforward, controlled method to enhance the anti-fouling properties of PVDF membranes, utilizing a blend of cellulose acetate (CA). The process involves a two-step modification of hydrolysis followed by quaternization, effectively increasing hydroxyl group presence and facilitating subsequent chemical reactions. The optimized membranes achieve a dynamic water contact angle of 0° within 30 s and maintain an electroneutral surface at pH 7.1. With a mean pore size reduction from 28.6 nm to 23.9 nm and an impressive drop in the irreversible fouling ratio from 36.9 % to 0.3 %, these modifications markedly improve the anti-fouling performance. This research demonstrates significant potential for enhancing the functionality of PVDF ultrafiltration membranes through post-fabrication modifications, offering significant benefits for water treatment applications.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.