利用冷凝器相变材料改善空调系统性能的计算研究

Energy Storage Pub Date : 2024-09-24 DOI:10.1002/est2.70051
Arun Kumar Sao, Arun Arora, Mukesh Kumar Sahu
{"title":"利用冷凝器相变材料改善空调系统性能的计算研究","authors":"Arun Kumar Sao,&nbsp;Arun Arora,&nbsp;Mukesh Kumar Sahu","doi":"10.1002/est2.70051","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The efficacy of employing multiple cylindrical phase change materials (PCM) to enhance the performance of an air conditioning (AC) unit is examined in this study. The objective of the present study is to examine the effects of combining an AC unit with a cylindrical PCM container configuration on the PCM discharge process and the performance of the AC system. The procedure involves the connection of a heat exchanger with a cold energy storage PCM to the condenser of the AC. During the daytime, the warm surrounding air is cooled and then transmitted to the AC unit's condenser. Four different turbulence models, that is, the SST <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>ω</mi>\n </mrow>\n <annotation>$$ k-\\omega $$</annotation>\n </semantics></math>, standard <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>ω</mi>\n </mrow>\n <annotation>$$ k-\\omega $$</annotation>\n </semantics></math>, Realizable <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>ɛ</mi>\n </mrow>\n <annotation>$$ k-\\varepsilon $$</annotation>\n </semantics></math> and RNG <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>ɛ</mi>\n </mrow>\n <annotation>$$ k-\\varepsilon $$</annotation>\n </semantics></math> have been considered for the present computational study. The investigation has been performed for different air flow rates, that is, 33.6, 42, and 49 <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>/</mo>\n <mi>s</mi>\n </mrow>\n <annotation>$$ \\mathrm{L}/\\mathrm{s} $$</annotation>\n </semantics></math> for a constant inlet air temperature of 308.15 K. The present outcomes indicate that as the flow rate rises, the air temperature inside the domain increases and the solid PCM starts melting. It is noted that complete discharging time for multi-cylindrical PCM reduces as the air flow rate rises which are around 13.36, 11.03, and 9.94 h for airflow rates of 33.6, 42, and 49 <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>/</mo>\n <mi>s</mi>\n </mrow>\n <annotation>$$ \\mathrm{L}/\\mathrm{s} $$</annotation>\n </semantics></math>, respectively. The maximum achieved increase in the COP is around 94.49%, 88.68%, and 87.57% at airflow rates of 33.6, 42, and 49 L/s, respectively, for the multi-cylindrical PCM throughout the summer. It is found that for the same temperature, as the airflow rate rises, the consumed power saving rises.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computational Study on Utilizing Phase Change Material With a Condenser to Improve air Conditioning System Performance\",\"authors\":\"Arun Kumar Sao,&nbsp;Arun Arora,&nbsp;Mukesh Kumar Sahu\",\"doi\":\"10.1002/est2.70051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The efficacy of employing multiple cylindrical phase change materials (PCM) to enhance the performance of an air conditioning (AC) unit is examined in this study. The objective of the present study is to examine the effects of combining an AC unit with a cylindrical PCM container configuration on the PCM discharge process and the performance of the AC system. The procedure involves the connection of a heat exchanger with a cold energy storage PCM to the condenser of the AC. During the daytime, the warm surrounding air is cooled and then transmitted to the AC unit's condenser. Four different turbulence models, that is, the SST <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>ω</mi>\\n </mrow>\\n <annotation>$$ k-\\\\omega $$</annotation>\\n </semantics></math>, standard <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>ω</mi>\\n </mrow>\\n <annotation>$$ k-\\\\omega $$</annotation>\\n </semantics></math>, Realizable <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>ɛ</mi>\\n </mrow>\\n <annotation>$$ k-\\\\varepsilon $$</annotation>\\n </semantics></math> and RNG <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mi>ɛ</mi>\\n </mrow>\\n <annotation>$$ k-\\\\varepsilon $$</annotation>\\n </semantics></math> have been considered for the present computational study. The investigation has been performed for different air flow rates, that is, 33.6, 42, and 49 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo>/</mo>\\n <mi>s</mi>\\n </mrow>\\n <annotation>$$ \\\\mathrm{L}/\\\\mathrm{s} $$</annotation>\\n </semantics></math> for a constant inlet air temperature of 308.15 K. The present outcomes indicate that as the flow rate rises, the air temperature inside the domain increases and the solid PCM starts melting. It is noted that complete discharging time for multi-cylindrical PCM reduces as the air flow rate rises which are around 13.36, 11.03, and 9.94 h for airflow rates of 33.6, 42, and 49 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo>/</mo>\\n <mi>s</mi>\\n </mrow>\\n <annotation>$$ \\\\mathrm{L}/\\\\mathrm{s} $$</annotation>\\n </semantics></math>, respectively. The maximum achieved increase in the COP is around 94.49%, 88.68%, and 87.57% at airflow rates of 33.6, 42, and 49 L/s, respectively, for the multi-cylindrical PCM throughout the summer. It is found that for the same temperature, as the airflow rate rises, the consumed power saving rises.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"6 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了采用多种圆柱形相变材料 (PCM) 提高空调 (AC) 设备性能的效果。本研究的目的是考察空调设备与圆柱形 PCM 容器配置相结合对 PCM 排放过程和空调系统性能的影响。该过程包括将装有冷能储存 PCM 的热交换器连接到空调的冷凝器上。白天,周围的暖空气被冷却,然后传送到空调设备的冷凝器。本计算研究考虑了四种不同的湍流模型,即 SST k - ω $$ k-\omega $$、标准 k - ω $$ k-\omega $$、Realizable k - ɛ $$ k-\varepsilon $$和 RNG k - ɛ $$ k-\varepsilon $$。研究针对不同的空气流速进行,即 33.6、42 和 49 L /s $$ \mathrm{L}/\mathrm{s} $$,入口空气温度恒定为 308.15 K。值得注意的是,多圆柱形 PCM 的完全排出时间随着空气流速的增加而缩短,当空气流速为 33.6、42 和 49 L / s $$ \mathrm{L}/\mathrm{s} $$ 时,排出时间分别为 13.36、11.03 和 9.94 h。在整个夏季,多圆柱形 PCM 的气流速率分别为 33.6、42 和 49 L/s 时,COP 的最大增幅分别约为 94.49%、88.68% 和 87.57%。研究发现,在温度相同的情况下,随着气流速率的增加,消耗的功率也会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Computational Study on Utilizing Phase Change Material With a Condenser to Improve air Conditioning System Performance

The efficacy of employing multiple cylindrical phase change materials (PCM) to enhance the performance of an air conditioning (AC) unit is examined in this study. The objective of the present study is to examine the effects of combining an AC unit with a cylindrical PCM container configuration on the PCM discharge process and the performance of the AC system. The procedure involves the connection of a heat exchanger with a cold energy storage PCM to the condenser of the AC. During the daytime, the warm surrounding air is cooled and then transmitted to the AC unit's condenser. Four different turbulence models, that is, the SST k ω $$ k-\omega $$ , standard k ω $$ k-\omega $$ , Realizable k ɛ $$ k-\varepsilon $$ and RNG k ɛ $$ k-\varepsilon $$ have been considered for the present computational study. The investigation has been performed for different air flow rates, that is, 33.6, 42, and 49  L / s $$ \mathrm{L}/\mathrm{s} $$ for a constant inlet air temperature of 308.15 K. The present outcomes indicate that as the flow rate rises, the air temperature inside the domain increases and the solid PCM starts melting. It is noted that complete discharging time for multi-cylindrical PCM reduces as the air flow rate rises which are around 13.36, 11.03, and 9.94 h for airflow rates of 33.6, 42, and 49  L / s $$ \mathrm{L}/\mathrm{s} $$ , respectively. The maximum achieved increase in the COP is around 94.49%, 88.68%, and 87.57% at airflow rates of 33.6, 42, and 49 L/s, respectively, for the multi-cylindrical PCM throughout the summer. It is found that for the same temperature, as the airflow rate rises, the consumed power saving rises.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer Optimization of a Metal Hydride Tank Targeted to Improve Hydrogen Storage Performance Polyaniline/Reduced Graphene Oxide/Zinc Oxide Hybrid Electrodes Fabricate by Combining Electrospinning/Electrospray Technique for Supercapacitors Search Survive Optimization Based Deep Incorporated Model for Electric Vehicle Battery Fault Detection Parametric Investigation to Assess the Charging and Discharging Time for a Latent Heat Storage Material-Based Thermal Energy Storage System for Concentrated Solar Power Plants Enhanced Thermoelectric Performance of La1.98Sr0.02Cu0.94Co0.06O4 by Multiwalled Carbon Nanotubes Addition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1