{"title":"智能导航:用于自动驾驶汽车全局路径规划的谷歌 OR 工具和机器学习调查","authors":"Alexandre Benoit, Pedram Asef","doi":"10.1002/aisy.202300840","DOIUrl":null,"url":null,"abstract":"<p>We offer a new in-depth investigation of global path planning (GPP) for unmanned ground vehicles, an autonomous mining sampling robot named ROMIE. GPP is essential for ROMIE's optimal performance, which is translated into solving the traveling salesman problem, a complex graph theory challenge that is crucial for determining the most effective route to cover all sampling locations in a mining field. This problem is central to enhancing ROMIE's operational efficiency and competitiveness against human labor by optimizing cost and time. The primary aim of this research is to advance GPP by developing, evaluating, and improving a cost-efficient software and web application. We delve into an extensive comparison and analysis of Google operations research (OR)-Tools optimization algorithms. Our study is driven by the goal of applying and testing the limits of OR-Tools capabilities by integrating Reinforcement Learning techniques for the first time. This enables us to compare these methods with OR-Tools, assessing their computational effectiveness and real-world application efficiency. Our analysis seeks to provide insights into the effectiveness and practical application of each technique. Our findings indicate that Q-Learning stands out as the optimal strategy, demonstrating superior efficiency by deviating only 1.2% on average from the optimal solutions across our datasets.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300840","citationCount":"0","resultStr":"{\"title\":\"Navigating Intelligence: A Survey of Google OR-Tools and Machine Learning for Global Path Planning in Autonomous Vehicles\",\"authors\":\"Alexandre Benoit, Pedram Asef\",\"doi\":\"10.1002/aisy.202300840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We offer a new in-depth investigation of global path planning (GPP) for unmanned ground vehicles, an autonomous mining sampling robot named ROMIE. GPP is essential for ROMIE's optimal performance, which is translated into solving the traveling salesman problem, a complex graph theory challenge that is crucial for determining the most effective route to cover all sampling locations in a mining field. This problem is central to enhancing ROMIE's operational efficiency and competitiveness against human labor by optimizing cost and time. The primary aim of this research is to advance GPP by developing, evaluating, and improving a cost-efficient software and web application. We delve into an extensive comparison and analysis of Google operations research (OR)-Tools optimization algorithms. Our study is driven by the goal of applying and testing the limits of OR-Tools capabilities by integrating Reinforcement Learning techniques for the first time. This enables us to compare these methods with OR-Tools, assessing their computational effectiveness and real-world application efficiency. Our analysis seeks to provide insights into the effectiveness and practical application of each technique. Our findings indicate that Q-Learning stands out as the optimal strategy, demonstrating superior efficiency by deviating only 1.2% on average from the optimal solutions across our datasets.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300840\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Navigating Intelligence: A Survey of Google OR-Tools and Machine Learning for Global Path Planning in Autonomous Vehicles
We offer a new in-depth investigation of global path planning (GPP) for unmanned ground vehicles, an autonomous mining sampling robot named ROMIE. GPP is essential for ROMIE's optimal performance, which is translated into solving the traveling salesman problem, a complex graph theory challenge that is crucial for determining the most effective route to cover all sampling locations in a mining field. This problem is central to enhancing ROMIE's operational efficiency and competitiveness against human labor by optimizing cost and time. The primary aim of this research is to advance GPP by developing, evaluating, and improving a cost-efficient software and web application. We delve into an extensive comparison and analysis of Google operations research (OR)-Tools optimization algorithms. Our study is driven by the goal of applying and testing the limits of OR-Tools capabilities by integrating Reinforcement Learning techniques for the first time. This enables us to compare these methods with OR-Tools, assessing their computational effectiveness and real-world application efficiency. Our analysis seeks to provide insights into the effectiveness and practical application of each technique. Our findings indicate that Q-Learning stands out as the optimal strategy, demonstrating superior efficiency by deviating only 1.2% on average from the optimal solutions across our datasets.