美国东南部放牧牧场改种甘蔗后甘蔗种植对碳循环的影响

IF 5.9 3区 工程技术 Q1 AGRONOMY Global Change Biology Bioenergy Pub Date : 2024-09-25 DOI:10.1111/gcbb.70003
Nuria Gomez-Casanovas, Elena Blanc-Betes, Carl J. Bernacchi, Elizabeth H. Boughton, Wendy Yang, Caitlin Moore, Taylor L. Pederson, Amartya Saha, Evan H. DeLucia
{"title":"美国东南部放牧牧场改种甘蔗后甘蔗种植对碳循环的影响","authors":"Nuria Gomez-Casanovas,&nbsp;Elena Blanc-Betes,&nbsp;Carl J. Bernacchi,&nbsp;Elizabeth H. Boughton,&nbsp;Wendy Yang,&nbsp;Caitlin Moore,&nbsp;Taylor L. Pederson,&nbsp;Amartya Saha,&nbsp;Evan H. DeLucia","doi":"10.1111/gcbb.70003","DOIUrl":null,"url":null,"abstract":"<p>The expansion of sugarcane, a tropical high-yielding feedstock, will likely reshape the Southeastern United States (SE US) bioenergy landscape. However, the sustainability of sugarcane, particularly as it displaces grazed pastures, is highly uncertain. Here, we investigated how pasture conversion to sugarcane in subtropical Florida impacts net ecosystem CO<sub>2</sub> exchange (NEE) and net ecosystem carbon (C) balance (NECB). Measurements were made over three full growth cycles (&gt; 3 years) in sugarcane—plant cane, PC; first ratoon cane, FRC; second ratoon cane, SRC—and in improved (IM) and semi-native (SN) pastures, which make up ca. 37% of agricultural land in the region. Immediately following conversion, PC was a stronger net source of CO<sub>2</sub> than pastures, indicating the importance of CO<sub>2</sub> losses related to land disturbance. Sugarcane, however, shifted to a strong net sink of CO<sub>2</sub> after first regrowth, and overall sugarcane was a stronger net CO<sub>2</sub> sink than pastures. Both stand age and low water availability during cane emergence and tillering substantially decreased its potential gross CO<sub>2</sub> uptake. Accounting for all C gains and removals (i.e., NECB), greater frequency of burn events and repeated harvest increased removals and overall made sugarcane a stronger C source relative to pastures despite substantial C inputs from the previous land use and a stronger CO<sub>2</sub> sink strength. Time since conversion substantially reduced C losses from sugarcane, and the NECB of SRC was similar to that of IM pasture but lower than that of SN pasture, indicating a rapid shift in the NECB of cane. We conclude that the C-balance implications following conversion will depend on the proportion of IM versus SN pastures converted to sugarcane. Furthermore, our findings suggest that no-burn harvest management strategies will be critical to the development of a sustainable bioenergy landscape in SE US.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 10","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70003","citationCount":"0","resultStr":"{\"title\":\"Impact of Sugarcane Cultivation on C Cycling in Southeastern United States Following Conversion From Grazed Pastures\",\"authors\":\"Nuria Gomez-Casanovas,&nbsp;Elena Blanc-Betes,&nbsp;Carl J. Bernacchi,&nbsp;Elizabeth H. Boughton,&nbsp;Wendy Yang,&nbsp;Caitlin Moore,&nbsp;Taylor L. Pederson,&nbsp;Amartya Saha,&nbsp;Evan H. DeLucia\",\"doi\":\"10.1111/gcbb.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The expansion of sugarcane, a tropical high-yielding feedstock, will likely reshape the Southeastern United States (SE US) bioenergy landscape. However, the sustainability of sugarcane, particularly as it displaces grazed pastures, is highly uncertain. Here, we investigated how pasture conversion to sugarcane in subtropical Florida impacts net ecosystem CO<sub>2</sub> exchange (NEE) and net ecosystem carbon (C) balance (NECB). Measurements were made over three full growth cycles (&gt; 3 years) in sugarcane—plant cane, PC; first ratoon cane, FRC; second ratoon cane, SRC—and in improved (IM) and semi-native (SN) pastures, which make up ca. 37% of agricultural land in the region. Immediately following conversion, PC was a stronger net source of CO<sub>2</sub> than pastures, indicating the importance of CO<sub>2</sub> losses related to land disturbance. Sugarcane, however, shifted to a strong net sink of CO<sub>2</sub> after first regrowth, and overall sugarcane was a stronger net CO<sub>2</sub> sink than pastures. Both stand age and low water availability during cane emergence and tillering substantially decreased its potential gross CO<sub>2</sub> uptake. Accounting for all C gains and removals (i.e., NECB), greater frequency of burn events and repeated harvest increased removals and overall made sugarcane a stronger C source relative to pastures despite substantial C inputs from the previous land use and a stronger CO<sub>2</sub> sink strength. Time since conversion substantially reduced C losses from sugarcane, and the NECB of SRC was similar to that of IM pasture but lower than that of SN pasture, indicating a rapid shift in the NECB of cane. We conclude that the C-balance implications following conversion will depend on the proportion of IM versus SN pastures converted to sugarcane. Furthermore, our findings suggest that no-burn harvest management strategies will be critical to the development of a sustainable bioenergy landscape in SE US.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"16 10\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70003\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

甘蔗是一种热带高产原料,它的发展可能会重塑美国东南部的生物能源格局。然而,甘蔗的可持续发展,尤其是当它取代放牧的牧场时,还存在很大的不确定性。在此,我们研究了佛罗里达州亚热带地区的牧草转化为甘蔗如何影响生态系统二氧化碳净交换量(NEE)和生态系统碳(C)净平衡(NECB)。在甘蔗的三个完整生长周期(> 3年)内进行了测量--种植甘蔗,PC;第一季甘蔗,FRC;第二季甘蔗,SRC;以及改良(IM)和半原生(SN)牧场,这些牧场约占该地区农业用地的37%。这些牧场约占该地区农业用地的 37%。转化后,PC 是比牧场更强的二氧化碳净来源,这表明与土地扰动有关的二氧化碳损失的重要性。然而,甘蔗在第一次重新生长后转为一个强大的二氧化碳净吸收汇,总体而言,甘蔗是比牧草更强大的二氧化碳净吸收汇。在甘蔗萌发和分蘖期间,植株年龄和低水分供应量都大大降低了其潜在的二氧化碳总吸收量。考虑到所有的碳增量和碳清除量(即 NECB),更频繁的焚烧事件和重复收割增加了清除量,总体而言,尽管甘蔗从以前的土地利用中获得了大量的碳输入,而且二氧化碳汇强度更大,但甘蔗相对于牧草而言是更强的碳源。转换后的时间大大减少了甘蔗的碳损失,SRC 的 NECB 与 IM 牧场相似,但低于 SN 牧场,这表明甘蔗的 NECB 发生了快速变化。我们的结论是,转化后的碳平衡影响将取决于转化为甘蔗的IM牧场和SN牧场的比例。此外,我们的研究结果表明,免焚烧收割管理策略对美国东南部可持续生物能源景观的发展至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Sugarcane Cultivation on C Cycling in Southeastern United States Following Conversion From Grazed Pastures

The expansion of sugarcane, a tropical high-yielding feedstock, will likely reshape the Southeastern United States (SE US) bioenergy landscape. However, the sustainability of sugarcane, particularly as it displaces grazed pastures, is highly uncertain. Here, we investigated how pasture conversion to sugarcane in subtropical Florida impacts net ecosystem CO2 exchange (NEE) and net ecosystem carbon (C) balance (NECB). Measurements were made over three full growth cycles (> 3 years) in sugarcane—plant cane, PC; first ratoon cane, FRC; second ratoon cane, SRC—and in improved (IM) and semi-native (SN) pastures, which make up ca. 37% of agricultural land in the region. Immediately following conversion, PC was a stronger net source of CO2 than pastures, indicating the importance of CO2 losses related to land disturbance. Sugarcane, however, shifted to a strong net sink of CO2 after first regrowth, and overall sugarcane was a stronger net CO2 sink than pastures. Both stand age and low water availability during cane emergence and tillering substantially decreased its potential gross CO2 uptake. Accounting for all C gains and removals (i.e., NECB), greater frequency of burn events and repeated harvest increased removals and overall made sugarcane a stronger C source relative to pastures despite substantial C inputs from the previous land use and a stronger CO2 sink strength. Time since conversion substantially reduced C losses from sugarcane, and the NECB of SRC was similar to that of IM pasture but lower than that of SN pasture, indicating a rapid shift in the NECB of cane. We conclude that the C-balance implications following conversion will depend on the proportion of IM versus SN pastures converted to sugarcane. Furthermore, our findings suggest that no-burn harvest management strategies will be critical to the development of a sustainable bioenergy landscape in SE US.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology Bioenergy
Global Change Biology Bioenergy AGRONOMY-ENERGY & FUELS
CiteScore
10.30
自引率
7.10%
发文量
96
审稿时长
1.5 months
期刊介绍: GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used. Key areas covered by the journal: Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis). Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW). Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues. Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems. Bioenergy Policy: legislative developments affecting biofuels and bioenergy. Bioenergy Systems Analysis: examining biological developments in a whole systems context.
期刊最新文献
Managing Soil Carbon Sequestration: Assessing the Effects of Intermediate Crops, Crop Residue Removal, and Digestate Application on Swedish Arable Land A New Enzyme for Biodiesel Production and Food Applications: Lipase of Bacillus megaterium F25 Isolated From an Aquatic Insect Rhantus suturalis Advanced Biofuel Value Chains Sourced by New Cropping Systems With Low iLUC Risk Displacement Factors for Aerosol Emissions From Alternative Forest Biomass Use Moderate Drought Constrains Crop Growth Without Altering Soil Organic Carbon Dynamics in Perennial Cup-Plant and Silage Maize
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1