在自我发散中重构师生关系

Yujie Zheng;Chong Wang;Chenchen Tao;Sunqi Lin;Jiangbo Qian;Jiafei Wu
{"title":"在自我发散中重构师生关系","authors":"Yujie Zheng;Chong Wang;Chenchen Tao;Sunqi Lin;Jiangbo Qian;Jiafei Wu","doi":"10.1109/TIP.2024.3463421","DOIUrl":null,"url":null,"abstract":"Knowledge distillation aims to achieve model compression by transferring knowledge from complex teacher models to lightweight student models. To reduce reliance on pre-trained teacher models, self-distillation methods utilize knowledge from the model itself as additional supervision. However, their performance is limited by the same or similar network architecture between the teacher and student. In order to increase architecture variety, we propose a new self-distillation framework called restructured self-distillation (RSD), which involves restructuring both the teacher and student networks. The self-distilled model is expanded into a multi-branch topology to create a more powerful teacher. During training, diverse student sub-networks are generated by randomly discarding the teacher’s branches. Additionally, the teacher and student models are linked by a randomly inserted feature mixture block, introducing additional knowledge distillation in the mixed feature space. To avoid extra inference costs, the branches of the teacher model are then converted back to its original structure equivalently. Comprehensive experiments have demonstrated the effectiveness of our proposed framework for most architectures on CIFAR-10/100 and ImageNet datasets. Code is available at \n<uri>https://github.com/YujieZheng99/RSD</uri>\n.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"5551-5563"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restructuring the Teacher and Student in Self-Distillation\",\"authors\":\"Yujie Zheng;Chong Wang;Chenchen Tao;Sunqi Lin;Jiangbo Qian;Jiafei Wu\",\"doi\":\"10.1109/TIP.2024.3463421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge distillation aims to achieve model compression by transferring knowledge from complex teacher models to lightweight student models. To reduce reliance on pre-trained teacher models, self-distillation methods utilize knowledge from the model itself as additional supervision. However, their performance is limited by the same or similar network architecture between the teacher and student. In order to increase architecture variety, we propose a new self-distillation framework called restructured self-distillation (RSD), which involves restructuring both the teacher and student networks. The self-distilled model is expanded into a multi-branch topology to create a more powerful teacher. During training, diverse student sub-networks are generated by randomly discarding the teacher’s branches. Additionally, the teacher and student models are linked by a randomly inserted feature mixture block, introducing additional knowledge distillation in the mixed feature space. To avoid extra inference costs, the branches of the teacher model are then converted back to its original structure equivalently. Comprehensive experiments have demonstrated the effectiveness of our proposed framework for most architectures on CIFAR-10/100 and ImageNet datasets. Code is available at \\n<uri>https://github.com/YujieZheng99/RSD</uri>\\n.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"33 \",\"pages\":\"5551-5563\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10693311/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10693311/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

知识蒸馏的目的是通过将复杂的教师模型中的知识转移到轻量级的学生模型中来实现模型压缩。为了减少对预训练教师模型的依赖,自蒸馏方法利用模型本身的知识作为额外的监督。然而,它们的性能受到教师和学生之间相同或相似网络架构的限制。为了增加架构的多样性,我们提出了一种新的自蒸馏框架,称为重组自蒸馏(RSD),其中涉及重组教师和学生网络。自蒸馏模型扩展为多分支拓扑结构,以创建更强大的教师网络。在训练过程中,通过随机丢弃教师的分支,生成多样化的学生子网络。此外,教师模型和学生模型通过随机插入的特征混合块连接起来,在混合特征空间中引入额外的知识提炼。为了避免额外的推理成本,教师模型的分支会被等效地转换回其原始结构。在 CIFAR-10/100 和 ImageNet 数据集上进行的综合实验证明了我们提出的框架对大多数架构的有效性。代码见 https://github.com/YujieZheng99/RSD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Restructuring the Teacher and Student in Self-Distillation
Knowledge distillation aims to achieve model compression by transferring knowledge from complex teacher models to lightweight student models. To reduce reliance on pre-trained teacher models, self-distillation methods utilize knowledge from the model itself as additional supervision. However, their performance is limited by the same or similar network architecture between the teacher and student. In order to increase architecture variety, we propose a new self-distillation framework called restructured self-distillation (RSD), which involves restructuring both the teacher and student networks. The self-distilled model is expanded into a multi-branch topology to create a more powerful teacher. During training, diverse student sub-networks are generated by randomly discarding the teacher’s branches. Additionally, the teacher and student models are linked by a randomly inserted feature mixture block, introducing additional knowledge distillation in the mixed feature space. To avoid extra inference costs, the branches of the teacher model are then converted back to its original structure equivalently. Comprehensive experiments have demonstrated the effectiveness of our proposed framework for most architectures on CIFAR-10/100 and ImageNet datasets. Code is available at https://github.com/YujieZheng99/RSD .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Cross-Attention Point Transformer With Global Porous Sampling Salient Object Detection From Arbitrary Modalities GSSF: Generalized Structural Sparse Function for Deep Cross-Modal Metric Learning AnlightenDiff: Anchoring Diffusion Probabilistic Model on Low Light Image Enhancement Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1