{"title":"通过单舱密闭组装构建具有可控多尺寸孔隙结构的卵黄@壳纳米复合粒子","authors":"Zhiming Wang, Meiqin Zhang, Xin Du","doi":"10.1021/acsnano.4c08285","DOIUrl":null,"url":null,"abstract":"Hollow nanoparticles with tunable structures and spatial and chemical specificity are considered as promising carriers. However, it remains a formidable challenge to endow hollow nanomaterials with precisely controlled multisized macro/mesoporous structures up to now. This paper demonstrates a “polydopamine (PDA) expansion–shrinkage” strategy combined with a monomicelle interfacial confined assembly method to achieve the highly controllable preparation of a series of yolk@shell PDA@SiO<sub>2</sub> composite nanoparticles with structural asymmetry and a tunable multisized pore in the shell. The strategy allows systematic manipulation of the average pore size of large slit pores in the range of 15.4–86.5 nm by adjusting the reaction temperature. Benefiting from advantages such as an asymmetric structure and multilevel porosity, they exhibit excellent performance in the applications of on-demand loading of dual-sized cargoes, dual-propelled nanomotors, and particle size-selected encapsulation and separation. These findings provide inspiration for the construction of asymmetric yolk@shell structures with tunable multisized pores for a wide range of biological and chemical applications.","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Yolk@shell Nanocomposite Particles with Controlled Multisized Pore Structures by Monomicelle Confined Assembly\",\"authors\":\"Zhiming Wang, Meiqin Zhang, Xin Du\",\"doi\":\"10.1021/acsnano.4c08285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hollow nanoparticles with tunable structures and spatial and chemical specificity are considered as promising carriers. However, it remains a formidable challenge to endow hollow nanomaterials with precisely controlled multisized macro/mesoporous structures up to now. This paper demonstrates a “polydopamine (PDA) expansion–shrinkage” strategy combined with a monomicelle interfacial confined assembly method to achieve the highly controllable preparation of a series of yolk@shell PDA@SiO<sub>2</sub> composite nanoparticles with structural asymmetry and a tunable multisized pore in the shell. The strategy allows systematic manipulation of the average pore size of large slit pores in the range of 15.4–86.5 nm by adjusting the reaction temperature. Benefiting from advantages such as an asymmetric structure and multilevel porosity, they exhibit excellent performance in the applications of on-demand loading of dual-sized cargoes, dual-propelled nanomotors, and particle size-selected encapsulation and separation. These findings provide inspiration for the construction of asymmetric yolk@shell structures with tunable multisized pores for a wide range of biological and chemical applications.\",\"PeriodicalId\":15,\"journal\":{\"name\":\"ACS Earth and Space Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Earth and Space Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c08285\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c08285","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Construction of Yolk@shell Nanocomposite Particles with Controlled Multisized Pore Structures by Monomicelle Confined Assembly
Hollow nanoparticles with tunable structures and spatial and chemical specificity are considered as promising carriers. However, it remains a formidable challenge to endow hollow nanomaterials with precisely controlled multisized macro/mesoporous structures up to now. This paper demonstrates a “polydopamine (PDA) expansion–shrinkage” strategy combined with a monomicelle interfacial confined assembly method to achieve the highly controllable preparation of a series of yolk@shell PDA@SiO2 composite nanoparticles with structural asymmetry and a tunable multisized pore in the shell. The strategy allows systematic manipulation of the average pore size of large slit pores in the range of 15.4–86.5 nm by adjusting the reaction temperature. Benefiting from advantages such as an asymmetric structure and multilevel porosity, they exhibit excellent performance in the applications of on-demand loading of dual-sized cargoes, dual-propelled nanomotors, and particle size-selected encapsulation and separation. These findings provide inspiration for the construction of asymmetric yolk@shell structures with tunable multisized pores for a wide range of biological and chemical applications.
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.