{"title":"合成生物学中细胞特异位点的非简谐氨基酸整合","authors":"Wei Niu*, and , Jiantao Guo*, ","doi":"10.1021/acs.chemrev.3c0093810.1021/acs.chemrev.3c00938","DOIUrl":null,"url":null,"abstract":"<p >Over the past two decades, genetic code expansion (GCE)-enabled methods for incorporating noncanonical amino acids (ncAAs) into proteins have significantly advanced the field of synthetic biology while also reaping substantial benefits from it. On one hand, they provide synthetic biologists with a powerful toolkit to enhance and diversify biological designs beyond natural constraints. Conversely, synthetic biology has not only propelled the development of ncAA incorporation through sophisticated tools and innovative strategies but also broadened its potential applications across various fields. This Review delves into the methodological advancements and primary applications of site-specific cellular incorporation of ncAAs in synthetic biology. The topics encompass expanding the genetic code through noncanonical codon addition, creating semiautonomous and autonomous organisms, designing regulatory elements, and manipulating and extending peptide natural product biosynthetic pathways. The Review concludes by examining the ongoing challenges and future prospects of GCE-enabled ncAA incorporation in synthetic biology and highlighting opportunities for further advancements in this rapidly evolving field.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"124 18","pages":"10577–10617 10577–10617"},"PeriodicalIF":51.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology\",\"authors\":\"Wei Niu*, and , Jiantao Guo*, \",\"doi\":\"10.1021/acs.chemrev.3c0093810.1021/acs.chemrev.3c00938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Over the past two decades, genetic code expansion (GCE)-enabled methods for incorporating noncanonical amino acids (ncAAs) into proteins have significantly advanced the field of synthetic biology while also reaping substantial benefits from it. On one hand, they provide synthetic biologists with a powerful toolkit to enhance and diversify biological designs beyond natural constraints. Conversely, synthetic biology has not only propelled the development of ncAA incorporation through sophisticated tools and innovative strategies but also broadened its potential applications across various fields. This Review delves into the methodological advancements and primary applications of site-specific cellular incorporation of ncAAs in synthetic biology. The topics encompass expanding the genetic code through noncanonical codon addition, creating semiautonomous and autonomous organisms, designing regulatory elements, and manipulating and extending peptide natural product biosynthetic pathways. The Review concludes by examining the ongoing challenges and future prospects of GCE-enabled ncAA incorporation in synthetic biology and highlighting opportunities for further advancements in this rapidly evolving field.</p>\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"124 18\",\"pages\":\"10577–10617 10577–10617\"},\"PeriodicalIF\":51.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00938\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00938","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology
Over the past two decades, genetic code expansion (GCE)-enabled methods for incorporating noncanonical amino acids (ncAAs) into proteins have significantly advanced the field of synthetic biology while also reaping substantial benefits from it. On one hand, they provide synthetic biologists with a powerful toolkit to enhance and diversify biological designs beyond natural constraints. Conversely, synthetic biology has not only propelled the development of ncAA incorporation through sophisticated tools and innovative strategies but also broadened its potential applications across various fields. This Review delves into the methodological advancements and primary applications of site-specific cellular incorporation of ncAAs in synthetic biology. The topics encompass expanding the genetic code through noncanonical codon addition, creating semiautonomous and autonomous organisms, designing regulatory elements, and manipulating and extending peptide natural product biosynthetic pathways. The Review concludes by examining the ongoing challenges and future prospects of GCE-enabled ncAA incorporation in synthetic biology and highlighting opportunities for further advancements in this rapidly evolving field.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.