Aron Garthen , Jan Philip Berg , Eva Ehrnsten , Marcin Klisz , Robert Weigel , Lisa Wilke , Jürgen Kreyling
{"title":"温带山毛榉林冬季较湿时的高硝酸盐和硫酸盐沥滤反应","authors":"Aron Garthen , Jan Philip Berg , Eva Ehrnsten , Marcin Klisz , Robert Weigel , Lisa Wilke , Jürgen Kreyling","doi":"10.1016/j.baae.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>Climate models project moderate to large increases in air temperature for most temperate ecosystems with an overall increase in winter precipitation and a shift from snow towards rain. We investigated the effects of increased winter rainfall on the ecosystem functioning of European beech forests at their north-eastern distribution range. In a large-scale field experiment we manipulated winter climate at nine forest sites by increasing the amount of rainfall and excluding snow. Nutrient availability in the topsoil and leaching in 50 cm depth as well as litter decomposition and radial growth of mature European beech trees were analysed. It was hypothesized that (1) wetter winters lead to increased nutrient deposition as well as leaching, with an overall increase in net nutrient availability, (2) decomposition decreases in response to water addition containing also additional nutrients and (3) primary production during the subsequent growing season increases as presumably not all additionally available nutrients would be leached. We found an increase in topsoil nitrate and sulfate availability during winter in response to rain addition, likely as a consequence of collecting more atmospheric deposition, and surprisingly high leaching rates of the additionally available nutrients. During the subsequent early growing season, no difference in nutrient availability could be observed anymore. Enhanced nutrient availability in the topsoil and leaching do not seem to have a strong short-term influence on forest ecosystem processes in ecosystems which are close to their critical load of N deposition. Decomposition rates during winter and early growing season as well as stem diameter growth during the following growing season were not influenced. This indicates that additional nutrients in the topsoil in response to wetter winters are not available for plant growth but pollute ground- and surface waters.</div></div>","PeriodicalId":8708,"journal":{"name":"Basic and Applied Ecology","volume":"80 ","pages":"Pages 120-127"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High nitrate and sulfate leaching in response to wetter winters in temperate beech forests\",\"authors\":\"Aron Garthen , Jan Philip Berg , Eva Ehrnsten , Marcin Klisz , Robert Weigel , Lisa Wilke , Jürgen Kreyling\",\"doi\":\"10.1016/j.baae.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Climate models project moderate to large increases in air temperature for most temperate ecosystems with an overall increase in winter precipitation and a shift from snow towards rain. We investigated the effects of increased winter rainfall on the ecosystem functioning of European beech forests at their north-eastern distribution range. In a large-scale field experiment we manipulated winter climate at nine forest sites by increasing the amount of rainfall and excluding snow. Nutrient availability in the topsoil and leaching in 50 cm depth as well as litter decomposition and radial growth of mature European beech trees were analysed. It was hypothesized that (1) wetter winters lead to increased nutrient deposition as well as leaching, with an overall increase in net nutrient availability, (2) decomposition decreases in response to water addition containing also additional nutrients and (3) primary production during the subsequent growing season increases as presumably not all additionally available nutrients would be leached. We found an increase in topsoil nitrate and sulfate availability during winter in response to rain addition, likely as a consequence of collecting more atmospheric deposition, and surprisingly high leaching rates of the additionally available nutrients. During the subsequent early growing season, no difference in nutrient availability could be observed anymore. Enhanced nutrient availability in the topsoil and leaching do not seem to have a strong short-term influence on forest ecosystem processes in ecosystems which are close to their critical load of N deposition. Decomposition rates during winter and early growing season as well as stem diameter growth during the following growing season were not influenced. This indicates that additional nutrients in the topsoil in response to wetter winters are not available for plant growth but pollute ground- and surface waters.</div></div>\",\"PeriodicalId\":8708,\"journal\":{\"name\":\"Basic and Applied Ecology\",\"volume\":\"80 \",\"pages\":\"Pages 120-127\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic and Applied Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1439179124000653\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Applied Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1439179124000653","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
High nitrate and sulfate leaching in response to wetter winters in temperate beech forests
Climate models project moderate to large increases in air temperature for most temperate ecosystems with an overall increase in winter precipitation and a shift from snow towards rain. We investigated the effects of increased winter rainfall on the ecosystem functioning of European beech forests at their north-eastern distribution range. In a large-scale field experiment we manipulated winter climate at nine forest sites by increasing the amount of rainfall and excluding snow. Nutrient availability in the topsoil and leaching in 50 cm depth as well as litter decomposition and radial growth of mature European beech trees were analysed. It was hypothesized that (1) wetter winters lead to increased nutrient deposition as well as leaching, with an overall increase in net nutrient availability, (2) decomposition decreases in response to water addition containing also additional nutrients and (3) primary production during the subsequent growing season increases as presumably not all additionally available nutrients would be leached. We found an increase in topsoil nitrate and sulfate availability during winter in response to rain addition, likely as a consequence of collecting more atmospheric deposition, and surprisingly high leaching rates of the additionally available nutrients. During the subsequent early growing season, no difference in nutrient availability could be observed anymore. Enhanced nutrient availability in the topsoil and leaching do not seem to have a strong short-term influence on forest ecosystem processes in ecosystems which are close to their critical load of N deposition. Decomposition rates during winter and early growing season as well as stem diameter growth during the following growing season were not influenced. This indicates that additional nutrients in the topsoil in response to wetter winters are not available for plant growth but pollute ground- and surface waters.
期刊介绍:
Basic and Applied Ecology provides a forum in which significant advances and ideas can be rapidly communicated to a wide audience. Basic and Applied Ecology publishes original contributions, perspectives and reviews from all areas of basic and applied ecology. Ecologists from all countries are invited to publish ecological research of international interest in its pages. There is no bias with regard to taxon or geographical area.