贝塞尔-高斯光束在多尘环境中的传输衰减研究

IF 2.3 3区 物理与天体物理 Q2 OPTICS Journal of Quantitative Spectroscopy & Radiative Transfer Pub Date : 2024-09-20 DOI:10.1016/j.jqsrt.2024.109200
Mingjian Cheng , Yuancong Cao , Chenge Shi , Huan Zhang , Lixin Guo
{"title":"贝塞尔-高斯光束在多尘环境中的传输衰减研究","authors":"Mingjian Cheng ,&nbsp;Yuancong Cao ,&nbsp;Chenge Shi ,&nbsp;Huan Zhang ,&nbsp;Lixin Guo","doi":"10.1016/j.jqsrt.2024.109200","DOIUrl":null,"url":null,"abstract":"<div><div>This paper delves into the transmission dynamics of Bessel-Gaussian (BG) beams in three distinct dusty environments, leveraging the Generalized Lorenz-Mie Theory (GLMT) alongside a single scattering model for a comprehensive analysis. Through numerical simulations, the study explores the interaction between dust particle scattering and the attenuation and transmittance behaviors of BG beams, elucidating the influences of varying particle concentrations and visibility conditions typical of floating dust, blowing sand, and sandstorms. The findings reveal numerous determinants, including particle number concentration, optical visibility, wavelength, orbital angular momentum (OAM) modes, waist radius, cone angle, and polarization states, which significantly affect the transmission performance of BG beams in dusty conditions. Notably, the attenuation rate decreases with increasing wavelengths and higher OAM modes, thereby extending effective transmission distances. Furthermore, the strategic use of linear polarization emerges as an optimal approach for enhancing BG beam transmission efficiency in dust-rich environments. These insights are crucial for optimizing BG beam transmission in real-world applications, marking a significant advancement in the field.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"329 ","pages":"Article 109200"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the transmission attenuation of Bessel-Gaussian beams in a dusty environment\",\"authors\":\"Mingjian Cheng ,&nbsp;Yuancong Cao ,&nbsp;Chenge Shi ,&nbsp;Huan Zhang ,&nbsp;Lixin Guo\",\"doi\":\"10.1016/j.jqsrt.2024.109200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper delves into the transmission dynamics of Bessel-Gaussian (BG) beams in three distinct dusty environments, leveraging the Generalized Lorenz-Mie Theory (GLMT) alongside a single scattering model for a comprehensive analysis. Through numerical simulations, the study explores the interaction between dust particle scattering and the attenuation and transmittance behaviors of BG beams, elucidating the influences of varying particle concentrations and visibility conditions typical of floating dust, blowing sand, and sandstorms. The findings reveal numerous determinants, including particle number concentration, optical visibility, wavelength, orbital angular momentum (OAM) modes, waist radius, cone angle, and polarization states, which significantly affect the transmission performance of BG beams in dusty conditions. Notably, the attenuation rate decreases with increasing wavelengths and higher OAM modes, thereby extending effective transmission distances. Furthermore, the strategic use of linear polarization emerges as an optimal approach for enhancing BG beam transmission efficiency in dust-rich environments. These insights are crucial for optimizing BG beam transmission in real-world applications, marking a significant advancement in the field.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"329 \",\"pages\":\"Article 109200\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407324003078\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324003078","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用广义洛伦兹-米理论(GLMT)和单一散射模型,深入研究了贝塞尔-高斯(BG)光束在三种不同灰尘环境中的传输动力学,以进行全面分析。通过数值模拟,该研究探讨了尘埃颗粒散射与玻色子光束的衰减和透射行为之间的相互作用,阐明了不同颗粒浓度以及浮尘、吹沙和沙尘暴等典型能见度条件的影响。研究结果揭示了许多决定因素,包括颗粒数量浓度、光学能见度、波长、轨道角动量(OAM)模式、腰半径、锥角和偏振态,这些因素对沙尘条件下 BG 光束的透射性能有重大影响。值得注意的是,衰减率会随着波长和 OAM 模式的增加而降低,从而延长有效传输距离。此外,战略性地使用线性极化是在多尘环境中提高光束传输效率的最佳方法。这些见解对于优化实际应用中的光束传输至关重要,标志着该领域取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on the transmission attenuation of Bessel-Gaussian beams in a dusty environment
This paper delves into the transmission dynamics of Bessel-Gaussian (BG) beams in three distinct dusty environments, leveraging the Generalized Lorenz-Mie Theory (GLMT) alongside a single scattering model for a comprehensive analysis. Through numerical simulations, the study explores the interaction between dust particle scattering and the attenuation and transmittance behaviors of BG beams, elucidating the influences of varying particle concentrations and visibility conditions typical of floating dust, blowing sand, and sandstorms. The findings reveal numerous determinants, including particle number concentration, optical visibility, wavelength, orbital angular momentum (OAM) modes, waist radius, cone angle, and polarization states, which significantly affect the transmission performance of BG beams in dusty conditions. Notably, the attenuation rate decreases with increasing wavelengths and higher OAM modes, thereby extending effective transmission distances. Furthermore, the strategic use of linear polarization emerges as an optimal approach for enhancing BG beam transmission efficiency in dust-rich environments. These insights are crucial for optimizing BG beam transmission in real-world applications, marking a significant advancement in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
期刊最新文献
Update Granada–Amsterdam Light Scattering Database Line-shape parameters and their temperature dependence for self-broadened CO2 lines in the 296 K- 1250 K range by requantized classical molecular dynamics simulations The j and k dependencies of N2-, O2-, and air-broadened halfwidths of the CH3CN molecule Impacts of scattering plane randomization on lidar multiple scattering polarization signals from water clouds Stark broadening of Sn II spectral lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1