{"title":"APE-GAN:以改进的注意力掩码机制为指导的红外图像焦点区域着色方法","authors":"Wenchao Ren, Liangfu Li, Shiyi Wen, Lingmei Ai","doi":"10.1016/j.cag.2024.104086","DOIUrl":null,"url":null,"abstract":"<div><div>Due to their minimal susceptibility to environmental changes, infrared images are widely applicable across various fields, particularly in the realm of traffic. Nonetheless, a common drawback of infrared images lies in their limited chroma and detail information, posing challenges for clear information retrieval. While extensive research has been conducted on colorizing infrared images in recent years, existing methods primarily focus on overall translation without adequately addressing the foreground area containing crucial details. To address this issue, we propose a novel approach that distinguishes and colors the foreground content with important information and the background content with less significant details separately before fusing them into a colored image. Consequently, we introduce an enhanced generative adversarial network based on Attention mask to meticulously translate the foreground content containing vital information more comprehensively. Furthermore, we have carefully designed a new composite loss function to optimize high-level detail generation and improve image colorization at a finer granularity. Detailed testing on IRVI datasets validates the effectiveness of our proposed method in solving the problem of infrared image coloring.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104086"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APE-GAN: A colorization method for focal areas of infrared images guided by an improved attention mask mechanism\",\"authors\":\"Wenchao Ren, Liangfu Li, Shiyi Wen, Lingmei Ai\",\"doi\":\"10.1016/j.cag.2024.104086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to their minimal susceptibility to environmental changes, infrared images are widely applicable across various fields, particularly in the realm of traffic. Nonetheless, a common drawback of infrared images lies in their limited chroma and detail information, posing challenges for clear information retrieval. While extensive research has been conducted on colorizing infrared images in recent years, existing methods primarily focus on overall translation without adequately addressing the foreground area containing crucial details. To address this issue, we propose a novel approach that distinguishes and colors the foreground content with important information and the background content with less significant details separately before fusing them into a colored image. Consequently, we introduce an enhanced generative adversarial network based on Attention mask to meticulously translate the foreground content containing vital information more comprehensively. Furthermore, we have carefully designed a new composite loss function to optimize high-level detail generation and improve image colorization at a finer granularity. Detailed testing on IRVI datasets validates the effectiveness of our proposed method in solving the problem of infrared image coloring.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104086\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324002218\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324002218","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
APE-GAN: A colorization method for focal areas of infrared images guided by an improved attention mask mechanism
Due to their minimal susceptibility to environmental changes, infrared images are widely applicable across various fields, particularly in the realm of traffic. Nonetheless, a common drawback of infrared images lies in their limited chroma and detail information, posing challenges for clear information retrieval. While extensive research has been conducted on colorizing infrared images in recent years, existing methods primarily focus on overall translation without adequately addressing the foreground area containing crucial details. To address this issue, we propose a novel approach that distinguishes and colors the foreground content with important information and the background content with less significant details separately before fusing them into a colored image. Consequently, we introduce an enhanced generative adversarial network based on Attention mask to meticulously translate the foreground content containing vital information more comprehensively. Furthermore, we have carefully designed a new composite loss function to optimize high-level detail generation and improve image colorization at a finer granularity. Detailed testing on IRVI datasets validates the effectiveness of our proposed method in solving the problem of infrared image coloring.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.