Vicki V Stylianou,Kirstie M Bertram,Van Anh Vo,Elizabeth B Dunn,Heeva Baharlou,Darcii J Terre,James Elhindi,Elisabeth Elder,James French,Farid Meybodi,Stéphane T Temmerman,Arnaud M Didierlaurent,Margherita Coccia,Kerrie J Sandgren,Anthony L Cunningham
{"title":"佐剂 AS01 对人体淋巴结外植体先天性免疫细胞的激活与年龄无关。","authors":"Vicki V Stylianou,Kirstie M Bertram,Van Anh Vo,Elizabeth B Dunn,Heeva Baharlou,Darcii J Terre,James Elhindi,Elisabeth Elder,James French,Farid Meybodi,Stéphane T Temmerman,Arnaud M Didierlaurent,Margherita Coccia,Kerrie J Sandgren,Anthony L Cunningham","doi":"10.1172/jci174144","DOIUrl":null,"url":null,"abstract":"Vaccine adjuvants are thought to work by stimulating innate immunity in the draining lymph node (LN), although this has not been proven in humans. To bridge data obtained in animals to humans, we have developed an in situ human LN explant model to investigate how adjuvants initiate immunity. Slices of explanted LNs were exposed to vaccine adjuvants and revealed responses that were not detectable in LN cell suspensions. We used this model to compare the liposome-based AS01 with its components MPL and QS-21, and TLR ligands. Liposomes were predominantly taken up by subcapsular sinus-lining macrophages, monocytes and dendritic cells. AS01 induced dendritic cell maturation and a strong pro-inflammatory cytokine response in intact LN slices but not in dissociated cell cultures, in contrast to R848. This suggests the onset of the immune response to AS01 requires a coordinated activation of LN cells in time and space. Consistent with the robust immune response observed in older adults with AS01-adjuvanted vaccines, the AS01 response in human LNs was independent of age, unlike R848. This human LN explant model is a valuable tool for studying the mechanism of action of adjuvants in humans and for screening new formulations to streamline vaccine development.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innate immune cell activation by adjuvant AS01 in human lymph node explants is age-independent.\",\"authors\":\"Vicki V Stylianou,Kirstie M Bertram,Van Anh Vo,Elizabeth B Dunn,Heeva Baharlou,Darcii J Terre,James Elhindi,Elisabeth Elder,James French,Farid Meybodi,Stéphane T Temmerman,Arnaud M Didierlaurent,Margherita Coccia,Kerrie J Sandgren,Anthony L Cunningham\",\"doi\":\"10.1172/jci174144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vaccine adjuvants are thought to work by stimulating innate immunity in the draining lymph node (LN), although this has not been proven in humans. To bridge data obtained in animals to humans, we have developed an in situ human LN explant model to investigate how adjuvants initiate immunity. Slices of explanted LNs were exposed to vaccine adjuvants and revealed responses that were not detectable in LN cell suspensions. We used this model to compare the liposome-based AS01 with its components MPL and QS-21, and TLR ligands. Liposomes were predominantly taken up by subcapsular sinus-lining macrophages, monocytes and dendritic cells. AS01 induced dendritic cell maturation and a strong pro-inflammatory cytokine response in intact LN slices but not in dissociated cell cultures, in contrast to R848. This suggests the onset of the immune response to AS01 requires a coordinated activation of LN cells in time and space. Consistent with the robust immune response observed in older adults with AS01-adjuvanted vaccines, the AS01 response in human LNs was independent of age, unlike R848. This human LN explant model is a valuable tool for studying the mechanism of action of adjuvants in humans and for screening new formulations to streamline vaccine development.\",\"PeriodicalId\":520097,\"journal\":{\"name\":\"The Journal of Clinical Investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Clinical Investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1172/jci174144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci174144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Innate immune cell activation by adjuvant AS01 in human lymph node explants is age-independent.
Vaccine adjuvants are thought to work by stimulating innate immunity in the draining lymph node (LN), although this has not been proven in humans. To bridge data obtained in animals to humans, we have developed an in situ human LN explant model to investigate how adjuvants initiate immunity. Slices of explanted LNs were exposed to vaccine adjuvants and revealed responses that were not detectable in LN cell suspensions. We used this model to compare the liposome-based AS01 with its components MPL and QS-21, and TLR ligands. Liposomes were predominantly taken up by subcapsular sinus-lining macrophages, monocytes and dendritic cells. AS01 induced dendritic cell maturation and a strong pro-inflammatory cytokine response in intact LN slices but not in dissociated cell cultures, in contrast to R848. This suggests the onset of the immune response to AS01 requires a coordinated activation of LN cells in time and space. Consistent with the robust immune response observed in older adults with AS01-adjuvanted vaccines, the AS01 response in human LNs was independent of age, unlike R848. This human LN explant model is a valuable tool for studying the mechanism of action of adjuvants in humans and for screening new formulations to streamline vaccine development.