Matthew Burrall, Jason T. DeJong, Alejandro Martinez, Tae-Hyuk Kwon
{"title":"嵌入土中的弯曲柔性结构的拉拔行为弹簧模型","authors":"Matthew Burrall, Jason T. DeJong, Alejandro Martinez, Tae-Hyuk Kwon","doi":"10.1002/nag.3845","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The shape and flexibility of embedded structures, such as tree roots, piles, and anchors, have important impacts on the pullout behavior. However, the rate and manner of mobilization of soil resistances along such structures has not been rigorously explored across a wide range of shapes and structural properties. A spring model for computing compatible displacements of the structure and soil for curved, flexible structures is defined, validated against commonly used methods for computing pile pullout behavior, and then parametrically explored to demonstrate how resistances are mobilized along the length of such structures. The present model allows description of combined axial and transverse loading of these nonlinear structures. The simulation results for the case of normally consolidated clay show that the curvature of a structure causes the distribution of bearing resistance to extend further along the structure than for linear cases. The requirement of equilibrium of the structure produces a coupling between the mobilized bearing and tensile resistance in terms of rate of development and magnitude. Thus, the choices of structure shape impact the magnitude and distribution of mobilized resistance of embedded flexible structures. Implications for anchorage of tree root structures and principles of bioinspired design of anchorage systems are discussed.</p>\n </div>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"48 18","pages":"4346-4364"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Spring Model for Pullout Behavior of Curved, Flexible Structures Embedded in Soil\",\"authors\":\"Matthew Burrall, Jason T. DeJong, Alejandro Martinez, Tae-Hyuk Kwon\",\"doi\":\"10.1002/nag.3845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The shape and flexibility of embedded structures, such as tree roots, piles, and anchors, have important impacts on the pullout behavior. However, the rate and manner of mobilization of soil resistances along such structures has not been rigorously explored across a wide range of shapes and structural properties. A spring model for computing compatible displacements of the structure and soil for curved, flexible structures is defined, validated against commonly used methods for computing pile pullout behavior, and then parametrically explored to demonstrate how resistances are mobilized along the length of such structures. The present model allows description of combined axial and transverse loading of these nonlinear structures. The simulation results for the case of normally consolidated clay show that the curvature of a structure causes the distribution of bearing resistance to extend further along the structure than for linear cases. The requirement of equilibrium of the structure produces a coupling between the mobilized bearing and tensile resistance in terms of rate of development and magnitude. Thus, the choices of structure shape impact the magnitude and distribution of mobilized resistance of embedded flexible structures. Implications for anchorage of tree root structures and principles of bioinspired design of anchorage systems are discussed.</p>\\n </div>\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"48 18\",\"pages\":\"4346-4364\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nag.3845\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3845","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A Spring Model for Pullout Behavior of Curved, Flexible Structures Embedded in Soil
The shape and flexibility of embedded structures, such as tree roots, piles, and anchors, have important impacts on the pullout behavior. However, the rate and manner of mobilization of soil resistances along such structures has not been rigorously explored across a wide range of shapes and structural properties. A spring model for computing compatible displacements of the structure and soil for curved, flexible structures is defined, validated against commonly used methods for computing pile pullout behavior, and then parametrically explored to demonstrate how resistances are mobilized along the length of such structures. The present model allows description of combined axial and transverse loading of these nonlinear structures. The simulation results for the case of normally consolidated clay show that the curvature of a structure causes the distribution of bearing resistance to extend further along the structure than for linear cases. The requirement of equilibrium of the structure produces a coupling between the mobilized bearing and tensile resistance in terms of rate of development and magnitude. Thus, the choices of structure shape impact the magnitude and distribution of mobilized resistance of embedded flexible structures. Implications for anchorage of tree root structures and principles of bioinspired design of anchorage systems are discussed.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.