用于下一代柔性光电子技术的超透明多功能 IZVO 网状电极

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2024-09-26 DOI:10.1007/s40820-024-01525-y
Kiran A. Nirmal, Tukaram D. Dongale, Atul C. Khot, Chenjie Yao, Nahyun Kim, Tae Geun Kim
{"title":"用于下一代柔性光电子技术的超透明多功能 IZVO 网状电极","authors":"Kiran A. Nirmal, Tukaram D. Dongale, Atul C. Khot, Chenjie Yao, Nahyun Kim, Tae Geun Kim","doi":"10.1007/s40820-024-01525-y","DOIUrl":null,"url":null,"abstract":"<p>Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices. Furthermore, they are crucial for applications in the fields of energy, display, healthcare, and soft robotics. Conducting meshes represent a promising alternative to traditional, brittle, metal oxide conductors due to their high electrical conductivity, optical transparency, and enhanced mechanical flexibility. In this paper, we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using self-cracking-assisted templates. Using this method, we produced an electrode with ultra-transparency (97.39%), high conductance (<i>R</i><sub>s</sub> = 21.24 Ω sq<sup>−1</sup>), elevated work function (5.16 eV), and good mechanical stability. We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics, organic light-emitting diodes, and flexible transparent memristor devices for neuromorphic computing, resulting in exceptional device performance. In addition, the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility, rendering them a promising option for application in flexible optoelectronics.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":26.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-Transparent and Multifunctional IZVO Mesh Electrodes for Next-Generation Flexible Optoelectronics\",\"authors\":\"Kiran A. Nirmal, Tukaram D. Dongale, Atul C. Khot, Chenjie Yao, Nahyun Kim, Tae Geun Kim\",\"doi\":\"10.1007/s40820-024-01525-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices. Furthermore, they are crucial for applications in the fields of energy, display, healthcare, and soft robotics. Conducting meshes represent a promising alternative to traditional, brittle, metal oxide conductors due to their high electrical conductivity, optical transparency, and enhanced mechanical flexibility. In this paper, we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using self-cracking-assisted templates. Using this method, we produced an electrode with ultra-transparency (97.39%), high conductance (<i>R</i><sub>s</sub> = 21.24 Ω sq<sup>−1</sup>), elevated work function (5.16 eV), and good mechanical stability. We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics, organic light-emitting diodes, and flexible transparent memristor devices for neuromorphic computing, resulting in exceptional device performance. In addition, the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility, rendering them a promising option for application in flexible optoelectronics.</p>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40820-024-01525-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-024-01525-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

具有机械耐久性的透明电极对于实现柔性光电设备的长期稳定性至关重要。此外,它们对于能源、显示、医疗保健和软机器人领域的应用也至关重要。导电网格具有高导电性、光学透明性和更强的机械灵活性,是传统脆性金属氧化物导体的理想替代品。在本文中,我们介绍了一种利用自裂辅助模板制造超透明导电金属氧化物网状电极的简单方法。利用这种方法,我们制造出了一种具有超高透明度(97.39%)、高电导率(Rs = 21.24 Ω sq-1)、较高功函数(5.16 eV)和良好机械稳定性的电极。我们还将制备的电极集成到有机光伏、有机发光二极管和用于神经形态计算的柔性透明忆阻器器件中,评估了这些电极的有效性,结果显示这些电极具有优异的器件性能。此外,掺钒氧化铟锌网状电极独特的多孔结构提供了极佳的灵活性,使其成为柔性光电子学中的一个有前途的应用选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-Transparent and Multifunctional IZVO Mesh Electrodes for Next-Generation Flexible Optoelectronics

Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices. Furthermore, they are crucial for applications in the fields of energy, display, healthcare, and soft robotics. Conducting meshes represent a promising alternative to traditional, brittle, metal oxide conductors due to their high electrical conductivity, optical transparency, and enhanced mechanical flexibility. In this paper, we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using self-cracking-assisted templates. Using this method, we produced an electrode with ultra-transparency (97.39%), high conductance (Rs = 21.24 Ω sq−1), elevated work function (5.16 eV), and good mechanical stability. We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics, organic light-emitting diodes, and flexible transparent memristor devices for neuromorphic computing, resulting in exceptional device performance. In addition, the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility, rendering them a promising option for application in flexible optoelectronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
Optimization Strategies of Na3V2(PO4)3 Cathode Materials for Sodium-Ion Batteries High Fe-Loading Single-Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy Aligned Ion Conduction Pathway of Polyrotaxane-Based Electrolyte with Dispersed Hydrophobic Chains for Solid-State Lithium–Oxygen Batteries Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1