Siddharth Sunilkumar, Esma I. Yerlikaya, Allyson L. Toro, Han Chen, Yandong Zhou, Donald L. Gill, Scot R. Kimball, Michael D. Dennis
{"title":"应激反应蛋白 REDD1 在荚膜细胞中的特异性表达是糖尿病诱导的荚膜细胞减少症的必要条件","authors":"Siddharth Sunilkumar, Esma I. Yerlikaya, Allyson L. Toro, Han Chen, Yandong Zhou, Donald L. Gill, Scot R. Kimball, Michael D. Dennis","doi":"10.2337/db24-0533","DOIUrl":null,"url":null,"abstract":"Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and effective treatment modalities that fully address its molecular etiology are lacking. Prior studies support that the stress response protein REDD1 (Regulated in Development and DNA Damage 1) contributes to the development of diabetic complications. This study investigated a potential role for REDD1 expression in podocytes in diabetes-induced podocyte loss and compromised glomerular filtration. Podocyte-specific REDD1 deletion protected against renal injury, as evidenced by reduced albuminuria, glomerular hypertrophy, and mesangial matrix deposition in streptozotocin (STZ)-induced diabetic mice. Podocyte-specific REDD1 expression was required for diabetes-induced reduction in slit diaphragm (SD) proteins podocin and nephrin. Notably, podocyte-specific REDD1 deletion protected against podocytopenia and preserved glomerular basement membrane and foot process architecture in diabetic mice. In the kidneys of diabetic mice and in human podocyte cultures exposed to hyperglycemic conditions, REDD1 was necessary for increased expression of the transient receptor potential canonical 6 (TRPC6) channel. More specifically, REDD1 promoted NF-κB-dependent transcription of TRPC6, intracellular calcium entry, and cytoskeletal remodeling under hyperglycemic conditions. Overall, the findings provide new insight into the role of podocyte-specific REDD1 expression in renal pathology and support the possibility that therapeutics targeting REDD1 in podocytes could be beneficial for DN.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Podocyte-Specific Expression of the Stress Response Protein REDD1 is Necessary for Diabetes-induced Podocytopenia\",\"authors\":\"Siddharth Sunilkumar, Esma I. Yerlikaya, Allyson L. Toro, Han Chen, Yandong Zhou, Donald L. Gill, Scot R. Kimball, Michael D. Dennis\",\"doi\":\"10.2337/db24-0533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and effective treatment modalities that fully address its molecular etiology are lacking. Prior studies support that the stress response protein REDD1 (Regulated in Development and DNA Damage 1) contributes to the development of diabetic complications. This study investigated a potential role for REDD1 expression in podocytes in diabetes-induced podocyte loss and compromised glomerular filtration. Podocyte-specific REDD1 deletion protected against renal injury, as evidenced by reduced albuminuria, glomerular hypertrophy, and mesangial matrix deposition in streptozotocin (STZ)-induced diabetic mice. Podocyte-specific REDD1 expression was required for diabetes-induced reduction in slit diaphragm (SD) proteins podocin and nephrin. Notably, podocyte-specific REDD1 deletion protected against podocytopenia and preserved glomerular basement membrane and foot process architecture in diabetic mice. In the kidneys of diabetic mice and in human podocyte cultures exposed to hyperglycemic conditions, REDD1 was necessary for increased expression of the transient receptor potential canonical 6 (TRPC6) channel. More specifically, REDD1 promoted NF-κB-dependent transcription of TRPC6, intracellular calcium entry, and cytoskeletal remodeling under hyperglycemic conditions. Overall, the findings provide new insight into the role of podocyte-specific REDD1 expression in renal pathology and support the possibility that therapeutics targeting REDD1 in podocytes could be beneficial for DN.\",\"PeriodicalId\":11376,\"journal\":{\"name\":\"Diabetes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2337/db24-0533\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db24-0533","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Podocyte-Specific Expression of the Stress Response Protein REDD1 is Necessary for Diabetes-induced Podocytopenia
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and effective treatment modalities that fully address its molecular etiology are lacking. Prior studies support that the stress response protein REDD1 (Regulated in Development and DNA Damage 1) contributes to the development of diabetic complications. This study investigated a potential role for REDD1 expression in podocytes in diabetes-induced podocyte loss and compromised glomerular filtration. Podocyte-specific REDD1 deletion protected against renal injury, as evidenced by reduced albuminuria, glomerular hypertrophy, and mesangial matrix deposition in streptozotocin (STZ)-induced diabetic mice. Podocyte-specific REDD1 expression was required for diabetes-induced reduction in slit diaphragm (SD) proteins podocin and nephrin. Notably, podocyte-specific REDD1 deletion protected against podocytopenia and preserved glomerular basement membrane and foot process architecture in diabetic mice. In the kidneys of diabetic mice and in human podocyte cultures exposed to hyperglycemic conditions, REDD1 was necessary for increased expression of the transient receptor potential canonical 6 (TRPC6) channel. More specifically, REDD1 promoted NF-κB-dependent transcription of TRPC6, intracellular calcium entry, and cytoskeletal remodeling under hyperglycemic conditions. Overall, the findings provide new insight into the role of podocyte-specific REDD1 expression in renal pathology and support the possibility that therapeutics targeting REDD1 in podocytes could be beneficial for DN.
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.