{"title":"高维线性中介模型假设检验的双重惩罚方法","authors":"Chenxuan He , Yiran He , Wangli Xu","doi":"10.1016/j.csda.2024.108064","DOIUrl":null,"url":null,"abstract":"<div><div>The field of mediation analysis, specifically high-dimensional mediation analysis, has been arousing great interest due to its applications in genetics, economics and other areas. Mediation analysis aims to investigate how exposure variables influence outcome variable via mediators, and it is categorized into direct and indirect effects based on whether the influence is mediated. A novel hypothesis testing method, called the dual-penalized method, is proposed to test direct and indirect effects. This method offers mild conditions and sound theoretical properties. Additionally, the asymptotic distributions of the proposed estimators are established to perform hypothesis testing. Results from simulation studies demonstrate that the dual-penalized method is highly effective, especially in weak signal settings. Further more, the application of this method to the childhood trauma data set reveals a new mediator with a credible basis in biological processes.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"202 ","pages":"Article 108064"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dual-penalized approach to hypothesis testing in high-dimensional linear mediation models\",\"authors\":\"Chenxuan He , Yiran He , Wangli Xu\",\"doi\":\"10.1016/j.csda.2024.108064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The field of mediation analysis, specifically high-dimensional mediation analysis, has been arousing great interest due to its applications in genetics, economics and other areas. Mediation analysis aims to investigate how exposure variables influence outcome variable via mediators, and it is categorized into direct and indirect effects based on whether the influence is mediated. A novel hypothesis testing method, called the dual-penalized method, is proposed to test direct and indirect effects. This method offers mild conditions and sound theoretical properties. Additionally, the asymptotic distributions of the proposed estimators are established to perform hypothesis testing. Results from simulation studies demonstrate that the dual-penalized method is highly effective, especially in weak signal settings. Further more, the application of this method to the childhood trauma data set reveals a new mediator with a credible basis in biological processes.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"202 \",\"pages\":\"Article 108064\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001488\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001488","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A dual-penalized approach to hypothesis testing in high-dimensional linear mediation models
The field of mediation analysis, specifically high-dimensional mediation analysis, has been arousing great interest due to its applications in genetics, economics and other areas. Mediation analysis aims to investigate how exposure variables influence outcome variable via mediators, and it is categorized into direct and indirect effects based on whether the influence is mediated. A novel hypothesis testing method, called the dual-penalized method, is proposed to test direct and indirect effects. This method offers mild conditions and sound theoretical properties. Additionally, the asymptotic distributions of the proposed estimators are established to perform hypothesis testing. Results from simulation studies demonstrate that the dual-penalized method is highly effective, especially in weak signal settings. Further more, the application of this method to the childhood trauma data set reveals a new mediator with a credible basis in biological processes.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]