控制二维和三维多维投影的散点图形状

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computers & Graphics-Uk Pub Date : 2024-09-24 DOI:10.1016/j.cag.2024.104093
Alister Machado, Alexandru Telea, Michael Behrisch
{"title":"控制二维和三维多维投影的散点图形状","authors":"Alister Machado,&nbsp;Alexandru Telea,&nbsp;Michael Behrisch","doi":"10.1016/j.cag.2024.104093","DOIUrl":null,"url":null,"abstract":"<div><div>Multidimensional projections are effective techniques for depicting high-dimensional data. The point patterns created by such techniques, or a technique’s <em>visual signature</em>, depend — apart from the data themselves — on the technique design and its parameter settings. Controlling such visual signatures — something that only few projections allow — can bring additional freedom for generating insightful depictions of the data. We present a novel projection technique — ShaRP — that allows explicit control on such visual signatures in terms of shapes of similar-value point clusters (settable to rectangles, triangles, ellipses, and convex polygons) and the projection space (2D or 3D Euclidean or <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>). We show that ShaRP scales computationally well with dimensionality and dataset size, provides its signature-control by a small set of parameters, allows trading off projection quality to signature enforcement, and can be used to generate decision maps to explore the behavior of trained machine-learning classifiers.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104093"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling the scatterplot shapes of 2D and 3D multidimensional projections\",\"authors\":\"Alister Machado,&nbsp;Alexandru Telea,&nbsp;Michael Behrisch\",\"doi\":\"10.1016/j.cag.2024.104093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multidimensional projections are effective techniques for depicting high-dimensional data. The point patterns created by such techniques, or a technique’s <em>visual signature</em>, depend — apart from the data themselves — on the technique design and its parameter settings. Controlling such visual signatures — something that only few projections allow — can bring additional freedom for generating insightful depictions of the data. We present a novel projection technique — ShaRP — that allows explicit control on such visual signatures in terms of shapes of similar-value point clusters (settable to rectangles, triangles, ellipses, and convex polygons) and the projection space (2D or 3D Euclidean or <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>). We show that ShaRP scales computationally well with dimensionality and dataset size, provides its signature-control by a small set of parameters, allows trading off projection quality to signature enforcement, and can be used to generate decision maps to explore the behavior of trained machine-learning classifiers.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104093\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324002280\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324002280","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

多维投影是描述高维数据的有效技术。除数据本身外,此类技术所创建的点模式或技术的视觉特征还取决于技术设计及其参数设置。控制这种视觉特征--只有少数投影技术可以做到--可以为生成有洞察力的数据描述带来更多自由。我们提出了一种新颖的投影技术--ShaRP,它允许在相似值点簇的形状(可设置为矩形、三角形、椭圆形和凸多边形)和投影空间(二维或三维欧几里得或 S2)方面对这种视觉特征进行明确控制。我们的研究表明,ShaRP 在计算维度和数据集大小方面具有良好的扩展性,只需一组很小的参数就能实现对签名的控制,允许在投影质量与签名执行之间进行权衡,并可用于生成决策图,以探索训练有素的机器学习分类器的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlling the scatterplot shapes of 2D and 3D multidimensional projections
Multidimensional projections are effective techniques for depicting high-dimensional data. The point patterns created by such techniques, or a technique’s visual signature, depend — apart from the data themselves — on the technique design and its parameter settings. Controlling such visual signatures — something that only few projections allow — can bring additional freedom for generating insightful depictions of the data. We present a novel projection technique — ShaRP — that allows explicit control on such visual signatures in terms of shapes of similar-value point clusters (settable to rectangles, triangles, ellipses, and convex polygons) and the projection space (2D or 3D Euclidean or S2). We show that ShaRP scales computationally well with dimensionality and dataset size, provides its signature-control by a small set of parameters, allows trading off projection quality to signature enforcement, and can be used to generate decision maps to explore the behavior of trained machine-learning classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
期刊最新文献
Enhancing Visual Analytics systems with guidance: A task-driven methodology Learning geometric complexes for 3D shape classification RenalViz: Visual analysis of cohorts with chronic kidney disease Enhancing semantic mapping in text-to-image diffusion via Gather-and-Bind CGLight: An effective indoor illumination estimation method based on improved convmixer and GauGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1