管理和根瘤微生物关联调节遗传驱动的氮归宿

IF 6 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Agriculture, Ecosystems & Environment Pub Date : 2024-09-26 DOI:10.1016/j.agee.2024.109308
Mitra Ghotbi , Marjan Ghotbi , Yakov Kuzyakov , William R. Horwath
{"title":"管理和根瘤微生物关联调节遗传驱动的氮归宿","authors":"Mitra Ghotbi ,&nbsp;Marjan Ghotbi ,&nbsp;Yakov Kuzyakov ,&nbsp;William R. Horwath","doi":"10.1016/j.agee.2024.109308","DOIUrl":null,"url":null,"abstract":"<div><div>The interplay between plant genotype and nutrient management affects rhizodeposition, which in turn modulates the rhizosphere-microbiome and microbe-mediated functions. Substituting mineral nitrogen (N) with an N-fixing inoculant reduces reliance on N fertilizer while supplying N to crops. We evaluated the effectiveness of integrating maize near-isogenic lines (NIL 1 and NIL 2) with the biological nitrification inhibition (BNI) trait into management practices aimed at optimizing N provisioning. Management strategies included mineral N inputs (0 and 67 kg ha⁻¹) with and without an N-fixing inoculant. Our approach synthesized insights from amplicon sequencing data and evaluated nitrification rates, rhizosphere N content, maize N uptake, and N use efficiency (NUE). Genotypes and management structured prokaryotic communities, while the developmental stages of genotypes further refined both fungal and prokaryotic communities. The N-fixing inoculant increased N availability, triggering the BNI capacity without increasing the nitrification rate. This was reflected in lower NO₃⁻ and higher NH₄⁺ levels in BNI-NIL leachate compared to B73, suggesting improved N retention. NIL2, characterized by distinct fungal biomarkers, exhibited higher N content (72.3 kg ha⁻¹) and superior NUE compared to NIL1 (65.0 kg ha⁻¹). NIL2’s enhanced N uptake was associated with a robust microbial network, featuring <em>Archangium</em> (prokaryote) and <em>Trichoderma</em> (eukaryote) as keystone taxa. Notably, <em>Archangium</em> was linked to rhizosphere N dynamics Synergizing BNI with diazotroph inoculants reduces N fertilizer reliance and increases maize N supply for sustainable agroecosystems.</div></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109308"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Management and rhizosphere microbial associations modulate genetic-driven nitrogen fate\",\"authors\":\"Mitra Ghotbi ,&nbsp;Marjan Ghotbi ,&nbsp;Yakov Kuzyakov ,&nbsp;William R. Horwath\",\"doi\":\"10.1016/j.agee.2024.109308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The interplay between plant genotype and nutrient management affects rhizodeposition, which in turn modulates the rhizosphere-microbiome and microbe-mediated functions. Substituting mineral nitrogen (N) with an N-fixing inoculant reduces reliance on N fertilizer while supplying N to crops. We evaluated the effectiveness of integrating maize near-isogenic lines (NIL 1 and NIL 2) with the biological nitrification inhibition (BNI) trait into management practices aimed at optimizing N provisioning. Management strategies included mineral N inputs (0 and 67 kg ha⁻¹) with and without an N-fixing inoculant. Our approach synthesized insights from amplicon sequencing data and evaluated nitrification rates, rhizosphere N content, maize N uptake, and N use efficiency (NUE). Genotypes and management structured prokaryotic communities, while the developmental stages of genotypes further refined both fungal and prokaryotic communities. The N-fixing inoculant increased N availability, triggering the BNI capacity without increasing the nitrification rate. This was reflected in lower NO₃⁻ and higher NH₄⁺ levels in BNI-NIL leachate compared to B73, suggesting improved N retention. NIL2, characterized by distinct fungal biomarkers, exhibited higher N content (72.3 kg ha⁻¹) and superior NUE compared to NIL1 (65.0 kg ha⁻¹). NIL2’s enhanced N uptake was associated with a robust microbial network, featuring <em>Archangium</em> (prokaryote) and <em>Trichoderma</em> (eukaryote) as keystone taxa. Notably, <em>Archangium</em> was linked to rhizosphere N dynamics Synergizing BNI with diazotroph inoculants reduces N fertilizer reliance and increases maize N supply for sustainable agroecosystems.</div></div>\",\"PeriodicalId\":7512,\"journal\":{\"name\":\"Agriculture, Ecosystems & Environment\",\"volume\":\"378 \",\"pages\":\"Article 109308\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture, Ecosystems & Environment\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167880924004262\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture, Ecosystems & Environment","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167880924004262","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

植物基因型与养分管理之间的相互作用会影响根瘤沉积,进而调节根瘤微生物群和微生物介导的功能。用固氮接种剂替代矿物氮可减少对氮肥的依赖,同时为作物提供氮。我们评估了将具有生物硝化抑制(BNI)性状的玉米近交系(NIL 1 和 NIL 2)与旨在优化氮供应的管理措施相结合的效果。管理策略包括使用或不使用固氮接种剂的矿物氮投入(0 和 67 千克/公顷-¹)。我们的方法综合了扩增子测序数据的见解,并评估了硝化率、根瘤氮含量、玉米氮吸收量和氮利用效率(NUE)。基因型和管理构建了原核生物群落,而基因型的发育阶段则进一步完善了真菌和原核生物群落。固氮接种剂提高了氮的可用性,在不增加硝化率的情况下激发了 BNI 能力。与 B73 相比,BNI-NIL 浸出液中的 NO₃- 含量更低,NH₄⁺ 含量更高,这表明氮的保留得到了改善。与 NIL1(65.0 千克/公顷-¹)相比,NIL2 的氮含量更高(72.3 千克/公顷-¹),氮利用率更高(65.0 千克/公顷-¹)。NIL2 对氮的吸收增强与强大的微生物网络有关,其特点是以 Archangium(原核生物)和 Trichoderma(真核生物)为关键类群。值得注意的是,弓形菌与根瘤层氮的动态有关 将 BNI 与重氮营养体接种剂协同作用,可减少对氮肥的依赖,增加玉米氮供应,实现可持续的农业生态系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Management and rhizosphere microbial associations modulate genetic-driven nitrogen fate
The interplay between plant genotype and nutrient management affects rhizodeposition, which in turn modulates the rhizosphere-microbiome and microbe-mediated functions. Substituting mineral nitrogen (N) with an N-fixing inoculant reduces reliance on N fertilizer while supplying N to crops. We evaluated the effectiveness of integrating maize near-isogenic lines (NIL 1 and NIL 2) with the biological nitrification inhibition (BNI) trait into management practices aimed at optimizing N provisioning. Management strategies included mineral N inputs (0 and 67 kg ha⁻¹) with and without an N-fixing inoculant. Our approach synthesized insights from amplicon sequencing data and evaluated nitrification rates, rhizosphere N content, maize N uptake, and N use efficiency (NUE). Genotypes and management structured prokaryotic communities, while the developmental stages of genotypes further refined both fungal and prokaryotic communities. The N-fixing inoculant increased N availability, triggering the BNI capacity without increasing the nitrification rate. This was reflected in lower NO₃⁻ and higher NH₄⁺ levels in BNI-NIL leachate compared to B73, suggesting improved N retention. NIL2, characterized by distinct fungal biomarkers, exhibited higher N content (72.3 kg ha⁻¹) and superior NUE compared to NIL1 (65.0 kg ha⁻¹). NIL2’s enhanced N uptake was associated with a robust microbial network, featuring Archangium (prokaryote) and Trichoderma (eukaryote) as keystone taxa. Notably, Archangium was linked to rhizosphere N dynamics Synergizing BNI with diazotroph inoculants reduces N fertilizer reliance and increases maize N supply for sustainable agroecosystems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agriculture, Ecosystems & Environment
Agriculture, Ecosystems & Environment 环境科学-环境科学
CiteScore
11.70
自引率
9.10%
发文量
392
审稿时长
26 days
期刊介绍: Agriculture, Ecosystems and Environment publishes scientific articles dealing with the interface between agroecosystems and the natural environment, specifically how agriculture influences the environment and how changes in that environment impact agroecosystems. Preference is given to papers from experimental and observational research at the field, system or landscape level, from studies that enhance our understanding of processes using data-based biophysical modelling, and papers that bridge scientific disciplines and integrate knowledge. All papers should be placed in an international or wide comparative context.
期刊最新文献
Agricultural land use modulates responses of soil biota and multifunctionality to increased antibiotic pressures Temperate grasslands under climate extremes: Effects of plant diversity on ecosystem services Phosphorus leaching in high-P soils under maize silage and interseeding cover crop system Trade-offs and synergies of food-water-land benefits for crop rotation optimization in Northeast China Water and sediment regulation eluting and washland planting lead to nitrogen increase in the lower reaches of the Yellow River
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1