{"title":"(2R, 6R)-羟基炔诺酮胺通过调节海马中的VGF/BDNF/GluA1信号通路,改善大鼠在恐惧记忆再巩固阶段的创伤后应激障碍样行为","authors":"","doi":"10.1016/j.bbr.2024.115273","DOIUrl":null,"url":null,"abstract":"<div><h3>Rationale</h3><div>Fear memory, a fundamental symptom of post-traumatic stress disorder (PTSD), is improved by (2R, 6R)-hydroxynorketamine ((2R, 6R)-HNK) administration. However, the phase of fear memory in which the injected drug is the most effective at mitigating PTSD-like effects remains unknown.</div></div><div><h3>Objective</h3><div>This study aimed to explore the effects of (2 R, 6 R)-HNK administration during three phases [acquisition (AP), reconsolidation (RP), and extinction (EP)] on PTSD-like behaviors in single prolonged stress (SPS) and contextual fear conditioning (CFC) rat models. The effects of VGF-inducible type of nerve growth factor (VGF), brain-derived neurotrophic factor (BDNF), and GluA1 on hippocampus (HIP) expression were also explored.</div></div><div><h3>Methods</h3><div>SPS and CFC (SPSC) were used to establish a PTSD rat model. After lateral ventricle injection of 5 μL (2 R, 6 R)-HNK (0.5 nmol). Anxiety-depression-like behaviors were assessed in rats by the open field test (OFT) and elevated plus maze test (EPMT). Situational fear responses were evaluated in rodents by freezing behavior test (FBT) test. In addition, GluA1, VGF, and BDNF were assessed in the hippocampus by Western blot assay (WB) and Immunohistochemistry assay (IF).</div></div><div><h3>Results</h3><div>SPSC procedure induced PTSD-like behaviors. The SPSC group had decreased spontaneous exploratory behavior and increased fear response. The (2R, 6R)-HNK group showed improved SPSC-induced reduction in GluA1, VGF, and BDNF levels in the HIP. During RP, anxiety and fear avoidance behaviors were alleviated, and the protein levels of GluA1, VGF, and BDNF in the HIP were restored. In contrast, no significant improvement was noted during AP and EP.</div></div><div><h3>Conclusions</h3><div>(2R,6R)-HNK modulates the VGF/BDNF/GluA1 signaling pathway in the hippocampus and improves PTSD-like behaviors during the reconsolidation phase of fear memory in rats, which may provide a new target for the clinical treatment and prevention of fear-related disorders such as PTSD.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(2R, 6R)-hydroxynorketamine ameliorates PTSD-like behaviors during the reconsolidation phase of fear memory in rats by modulating the VGF/BDNF/GluA1 signaling pathway in the hippocampus\",\"authors\":\"\",\"doi\":\"10.1016/j.bbr.2024.115273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Rationale</h3><div>Fear memory, a fundamental symptom of post-traumatic stress disorder (PTSD), is improved by (2R, 6R)-hydroxynorketamine ((2R, 6R)-HNK) administration. However, the phase of fear memory in which the injected drug is the most effective at mitigating PTSD-like effects remains unknown.</div></div><div><h3>Objective</h3><div>This study aimed to explore the effects of (2 R, 6 R)-HNK administration during three phases [acquisition (AP), reconsolidation (RP), and extinction (EP)] on PTSD-like behaviors in single prolonged stress (SPS) and contextual fear conditioning (CFC) rat models. The effects of VGF-inducible type of nerve growth factor (VGF), brain-derived neurotrophic factor (BDNF), and GluA1 on hippocampus (HIP) expression were also explored.</div></div><div><h3>Methods</h3><div>SPS and CFC (SPSC) were used to establish a PTSD rat model. After lateral ventricle injection of 5 μL (2 R, 6 R)-HNK (0.5 nmol). Anxiety-depression-like behaviors were assessed in rats by the open field test (OFT) and elevated plus maze test (EPMT). Situational fear responses were evaluated in rodents by freezing behavior test (FBT) test. In addition, GluA1, VGF, and BDNF were assessed in the hippocampus by Western blot assay (WB) and Immunohistochemistry assay (IF).</div></div><div><h3>Results</h3><div>SPSC procedure induced PTSD-like behaviors. The SPSC group had decreased spontaneous exploratory behavior and increased fear response. The (2R, 6R)-HNK group showed improved SPSC-induced reduction in GluA1, VGF, and BDNF levels in the HIP. During RP, anxiety and fear avoidance behaviors were alleviated, and the protein levels of GluA1, VGF, and BDNF in the HIP were restored. In contrast, no significant improvement was noted during AP and EP.</div></div><div><h3>Conclusions</h3><div>(2R,6R)-HNK modulates the VGF/BDNF/GluA1 signaling pathway in the hippocampus and improves PTSD-like behaviors during the reconsolidation phase of fear memory in rats, which may provide a new target for the clinical treatment and prevention of fear-related disorders such as PTSD.</div></div>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166432824004297\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824004297","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
(2R, 6R)-hydroxynorketamine ameliorates PTSD-like behaviors during the reconsolidation phase of fear memory in rats by modulating the VGF/BDNF/GluA1 signaling pathway in the hippocampus
Rationale
Fear memory, a fundamental symptom of post-traumatic stress disorder (PTSD), is improved by (2R, 6R)-hydroxynorketamine ((2R, 6R)-HNK) administration. However, the phase of fear memory in which the injected drug is the most effective at mitigating PTSD-like effects remains unknown.
Objective
This study aimed to explore the effects of (2 R, 6 R)-HNK administration during three phases [acquisition (AP), reconsolidation (RP), and extinction (EP)] on PTSD-like behaviors in single prolonged stress (SPS) and contextual fear conditioning (CFC) rat models. The effects of VGF-inducible type of nerve growth factor (VGF), brain-derived neurotrophic factor (BDNF), and GluA1 on hippocampus (HIP) expression were also explored.
Methods
SPS and CFC (SPSC) were used to establish a PTSD rat model. After lateral ventricle injection of 5 μL (2 R, 6 R)-HNK (0.5 nmol). Anxiety-depression-like behaviors were assessed in rats by the open field test (OFT) and elevated plus maze test (EPMT). Situational fear responses were evaluated in rodents by freezing behavior test (FBT) test. In addition, GluA1, VGF, and BDNF were assessed in the hippocampus by Western blot assay (WB) and Immunohistochemistry assay (IF).
Results
SPSC procedure induced PTSD-like behaviors. The SPSC group had decreased spontaneous exploratory behavior and increased fear response. The (2R, 6R)-HNK group showed improved SPSC-induced reduction in GluA1, VGF, and BDNF levels in the HIP. During RP, anxiety and fear avoidance behaviors were alleviated, and the protein levels of GluA1, VGF, and BDNF in the HIP were restored. In contrast, no significant improvement was noted during AP and EP.
Conclusions
(2R,6R)-HNK modulates the VGF/BDNF/GluA1 signaling pathway in the hippocampus and improves PTSD-like behaviors during the reconsolidation phase of fear memory in rats, which may provide a new target for the clinical treatment and prevention of fear-related disorders such as PTSD.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.