Zhixuan Xiong , Qinghua Zeng , Ying Hu , Chongde Lai , Huansheng Wu
{"title":"Optineurin 通过与 VP1 相互作用抑制 IBDV 复制","authors":"Zhixuan Xiong , Qinghua Zeng , Ying Hu , Chongde Lai , Huansheng Wu","doi":"10.1016/j.vetmic.2024.110261","DOIUrl":null,"url":null,"abstract":"<div><div>Avibirnavirus, specifically Infectious Bursal Disease Virus (IBDV), is a highly contagious pathogen that causes significant economic losses in the poultry industry. The polymerase protein VP1 of IBDV is critical to the viral life cycle, facilitating the synthesis of viral mRNA and the genome. Previous studies have suggested that various host factors influence the regulation of IBDV polymerase activity. In this study, we identified that IBDV infection induces the expression of optineurin (OPTN), a mitophagy receptor and a protein associated with amyotrophic lateral sclerosis (ALS), as well as a negative regulator of interferon I production. The induced expression of OPTN acts as a suppressor of IBDV replication, a function dependent on its ubiquitin-binding domain (UBAN). Furthermore, we demonstrated that OPTN exerts its antiviral effects through direct interactions with VP1 and VP3, which inhibit the polymerase activity of VP1 by preventing K63-linked ubiquitination of VP1. To our knowledge, this study is the first to report that OPTN, upregulated during IBDV infection, functions as a novel antiviral host factor that limits the virus's replicative capacity, offering a potential target for anti-IBDV therapeutic strategies.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"298 ","pages":"Article 110261"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optineurin inhibits IBDV replication via interacting with VP1\",\"authors\":\"Zhixuan Xiong , Qinghua Zeng , Ying Hu , Chongde Lai , Huansheng Wu\",\"doi\":\"10.1016/j.vetmic.2024.110261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Avibirnavirus, specifically Infectious Bursal Disease Virus (IBDV), is a highly contagious pathogen that causes significant economic losses in the poultry industry. The polymerase protein VP1 of IBDV is critical to the viral life cycle, facilitating the synthesis of viral mRNA and the genome. Previous studies have suggested that various host factors influence the regulation of IBDV polymerase activity. In this study, we identified that IBDV infection induces the expression of optineurin (OPTN), a mitophagy receptor and a protein associated with amyotrophic lateral sclerosis (ALS), as well as a negative regulator of interferon I production. The induced expression of OPTN acts as a suppressor of IBDV replication, a function dependent on its ubiquitin-binding domain (UBAN). Furthermore, we demonstrated that OPTN exerts its antiviral effects through direct interactions with VP1 and VP3, which inhibit the polymerase activity of VP1 by preventing K63-linked ubiquitination of VP1. To our knowledge, this study is the first to report that OPTN, upregulated during IBDV infection, functions as a novel antiviral host factor that limits the virus's replicative capacity, offering a potential target for anti-IBDV therapeutic strategies.</div></div>\",\"PeriodicalId\":23551,\"journal\":{\"name\":\"Veterinary microbiology\",\"volume\":\"298 \",\"pages\":\"Article 110261\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378113524002839\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113524002839","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Optineurin inhibits IBDV replication via interacting with VP1
Avibirnavirus, specifically Infectious Bursal Disease Virus (IBDV), is a highly contagious pathogen that causes significant economic losses in the poultry industry. The polymerase protein VP1 of IBDV is critical to the viral life cycle, facilitating the synthesis of viral mRNA and the genome. Previous studies have suggested that various host factors influence the regulation of IBDV polymerase activity. In this study, we identified that IBDV infection induces the expression of optineurin (OPTN), a mitophagy receptor and a protein associated with amyotrophic lateral sclerosis (ALS), as well as a negative regulator of interferon I production. The induced expression of OPTN acts as a suppressor of IBDV replication, a function dependent on its ubiquitin-binding domain (UBAN). Furthermore, we demonstrated that OPTN exerts its antiviral effects through direct interactions with VP1 and VP3, which inhibit the polymerase activity of VP1 by preventing K63-linked ubiquitination of VP1. To our knowledge, this study is the first to report that OPTN, upregulated during IBDV infection, functions as a novel antiviral host factor that limits the virus's replicative capacity, offering a potential target for anti-IBDV therapeutic strategies.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.