{"title":"无镜头成像系统的四帧像素超分辨率方法","authors":"","doi":"10.1016/j.optlaseng.2024.108597","DOIUrl":null,"url":null,"abstract":"<div><div>Lensless imaging systems have gained significant attention recently due to their advantages in terms of reduced size and weight compared to traditional lens-based systems. However, like other imaging methods, lensless imaging encounters challenges in resolving scenes with more details. In this article, we propose a novel four-frame super-resolution method specifically tailored for lensless imaging systems. Our approach shares similarities with previous lensless imaging systems, involving a sensor and a modulation device placed in front of the image sensor. We develop an explicit degradation downsampling model with sub-pixel shifts and provide the solution to corresponding inverse problem, may offering valuable guidance for other super-resolution imaging algorithms based on spatial displacements. By applying random lateral sub-pixel shifts, acquiring four low-resolution (LR) images, and fusing their spatial information, we achieve high-resolution (HR) sensor recordings, enabling super-resolution reconstruction of the imaging scene. Numerical simulations demonstrate approximately an improvement in spatial resolution compared to single-measurement methods. Furthermore, we evaluate the performance of our method across various lensless imaging systems utilizing different masks, validating its versatility and effectiveness in achieving higher resolution outcomes. Experimental results also support our proposed scheme's ability to achieve higher spatial resolution reconstruction in a real system.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Four-frame pixel super-resolution method for lensless imaging systems\",\"authors\":\"\",\"doi\":\"10.1016/j.optlaseng.2024.108597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lensless imaging systems have gained significant attention recently due to their advantages in terms of reduced size and weight compared to traditional lens-based systems. However, like other imaging methods, lensless imaging encounters challenges in resolving scenes with more details. In this article, we propose a novel four-frame super-resolution method specifically tailored for lensless imaging systems. Our approach shares similarities with previous lensless imaging systems, involving a sensor and a modulation device placed in front of the image sensor. We develop an explicit degradation downsampling model with sub-pixel shifts and provide the solution to corresponding inverse problem, may offering valuable guidance for other super-resolution imaging algorithms based on spatial displacements. By applying random lateral sub-pixel shifts, acquiring four low-resolution (LR) images, and fusing their spatial information, we achieve high-resolution (HR) sensor recordings, enabling super-resolution reconstruction of the imaging scene. Numerical simulations demonstrate approximately an improvement in spatial resolution compared to single-measurement methods. Furthermore, we evaluate the performance of our method across various lensless imaging systems utilizing different masks, validating its versatility and effectiveness in achieving higher resolution outcomes. Experimental results also support our proposed scheme's ability to achieve higher spatial resolution reconstruction in a real system.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014381662400575X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014381662400575X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Four-frame pixel super-resolution method for lensless imaging systems
Lensless imaging systems have gained significant attention recently due to their advantages in terms of reduced size and weight compared to traditional lens-based systems. However, like other imaging methods, lensless imaging encounters challenges in resolving scenes with more details. In this article, we propose a novel four-frame super-resolution method specifically tailored for lensless imaging systems. Our approach shares similarities with previous lensless imaging systems, involving a sensor and a modulation device placed in front of the image sensor. We develop an explicit degradation downsampling model with sub-pixel shifts and provide the solution to corresponding inverse problem, may offering valuable guidance for other super-resolution imaging algorithms based on spatial displacements. By applying random lateral sub-pixel shifts, acquiring four low-resolution (LR) images, and fusing their spatial information, we achieve high-resolution (HR) sensor recordings, enabling super-resolution reconstruction of the imaging scene. Numerical simulations demonstrate approximately an improvement in spatial resolution compared to single-measurement methods. Furthermore, we evaluate the performance of our method across various lensless imaging systems utilizing different masks, validating its versatility and effectiveness in achieving higher resolution outcomes. Experimental results also support our proposed scheme's ability to achieve higher spatial resolution reconstruction in a real system.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques