Baopeng Zhang , Haifeng Xiao , Weicheng Wang , Feiyang Li , Yun Wang , Haihong Zhu
{"title":"CuCr0.8 基质表面状态的激光吸收率对激光定向能沉积镍铬合金 718 单通道特性的影响","authors":"Baopeng Zhang , Haifeng Xiao , Weicheng Wang , Feiyang Li , Yun Wang , Haihong Zhu","doi":"10.1016/j.jmrt.2024.09.178","DOIUrl":null,"url":null,"abstract":"<div><div>An effective method for fabricating copper-nickel bimetallic liquid rocket engine thrust chambers involves utilizing laser directed energy deposition (LDED) technology. However, the state of the substrate surface significantly impacts the LDED process. This study investigates the effects of various substrate treatments on LDED single tracks, using CuCr0.8 high-copper alloy as the substrate and Inconel 718 as the deposition material. The treatments include polishing, sandblasting, laser etching, and cold spraying. Substrate surface roughness, laser absorptivity, molten pool morphology, and microstructure were characterized, and the mechanisms of laser absorptivity change and the different LDED processes were analyzed. The results indicate that the laser-etched surface exhibits the worst surface roughness (Ra 15.20 ± 0.60 μm), the highest laser absorptivity(80.70% at 1080 nm wavelength), the largest deposition width (947.33 ± 29.85 μm), and the maximum number of fine grains among the four substrates. Additionally, the cold-sprayed surface shows the largest deposition depth (237.33 ± 39.04 μm), the minimum number of fine grains and a higher laser absorptivity (66.20% at 1080 nm wavelength). In situ observations of molten pool formation and flow during LDED was conducted using an in situ high-speed high-resolution imaging system. The mechanisms underlying the alteration in laser absorptivity primarily involve the \"trapped light\" effect and modifications to the surface material. This research is significant as it provides foundational insights for laser processing of highly reflective materials, offering important theoretical and practical implications for engineering applications.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"33 ","pages":"Pages 1898-1909"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of laser absorptivity of CuCr0.8 substrate surface state on the characteristics of laser directed energy deposition inconel 718 single track\",\"authors\":\"Baopeng Zhang , Haifeng Xiao , Weicheng Wang , Feiyang Li , Yun Wang , Haihong Zhu\",\"doi\":\"10.1016/j.jmrt.2024.09.178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An effective method for fabricating copper-nickel bimetallic liquid rocket engine thrust chambers involves utilizing laser directed energy deposition (LDED) technology. However, the state of the substrate surface significantly impacts the LDED process. This study investigates the effects of various substrate treatments on LDED single tracks, using CuCr0.8 high-copper alloy as the substrate and Inconel 718 as the deposition material. The treatments include polishing, sandblasting, laser etching, and cold spraying. Substrate surface roughness, laser absorptivity, molten pool morphology, and microstructure were characterized, and the mechanisms of laser absorptivity change and the different LDED processes were analyzed. The results indicate that the laser-etched surface exhibits the worst surface roughness (Ra 15.20 ± 0.60 μm), the highest laser absorptivity(80.70% at 1080 nm wavelength), the largest deposition width (947.33 ± 29.85 μm), and the maximum number of fine grains among the four substrates. Additionally, the cold-sprayed surface shows the largest deposition depth (237.33 ± 39.04 μm), the minimum number of fine grains and a higher laser absorptivity (66.20% at 1080 nm wavelength). In situ observations of molten pool formation and flow during LDED was conducted using an in situ high-speed high-resolution imaging system. The mechanisms underlying the alteration in laser absorptivity primarily involve the \\\"trapped light\\\" effect and modifications to the surface material. This research is significant as it provides foundational insights for laser processing of highly reflective materials, offering important theoretical and practical implications for engineering applications.</div></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"33 \",\"pages\":\"Pages 1898-1909\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785424021835\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424021835","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of laser absorptivity of CuCr0.8 substrate surface state on the characteristics of laser directed energy deposition inconel 718 single track
An effective method for fabricating copper-nickel bimetallic liquid rocket engine thrust chambers involves utilizing laser directed energy deposition (LDED) technology. However, the state of the substrate surface significantly impacts the LDED process. This study investigates the effects of various substrate treatments on LDED single tracks, using CuCr0.8 high-copper alloy as the substrate and Inconel 718 as the deposition material. The treatments include polishing, sandblasting, laser etching, and cold spraying. Substrate surface roughness, laser absorptivity, molten pool morphology, and microstructure were characterized, and the mechanisms of laser absorptivity change and the different LDED processes were analyzed. The results indicate that the laser-etched surface exhibits the worst surface roughness (Ra 15.20 ± 0.60 μm), the highest laser absorptivity(80.70% at 1080 nm wavelength), the largest deposition width (947.33 ± 29.85 μm), and the maximum number of fine grains among the four substrates. Additionally, the cold-sprayed surface shows the largest deposition depth (237.33 ± 39.04 μm), the minimum number of fine grains and a higher laser absorptivity (66.20% at 1080 nm wavelength). In situ observations of molten pool formation and flow during LDED was conducted using an in situ high-speed high-resolution imaging system. The mechanisms underlying the alteration in laser absorptivity primarily involve the "trapped light" effect and modifications to the surface material. This research is significant as it provides foundational insights for laser processing of highly reflective materials, offering important theoretical and practical implications for engineering applications.
期刊介绍:
The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.