{"title":"基于修改后的非线性地面压力分布的防滑轮胎嵌件动态特性研究","authors":"Liguo Zang , Cheng Xue , Xinlei Peng , Jing Jiao , Yuxin Feng , Yulin Mao","doi":"10.1016/j.ijnonlinmec.2024.104916","DOIUrl":null,"url":null,"abstract":"<div><div>Tyres are the sole vehicle components in direct contact with the ground, so making an accurate description of their ground pressure distribution is crucial for studying tyres and vehicles mechanical characteristics. The incorporation of an insert body on the rim leads to a significant divergence in the ground pressure distribution of inserts supporting run-flat tyre (ISRFT) under zero-pressure conditions compared to radial tyres. To elucidate the ground pressure distribution law of ISRFT, this study first develops a theoretical model of ISRFT-ground contact and proposes a modified non-linear ground pressure distribution. Subsequently, the verification and estimation of the parameters related to the modified non-linear ground pressure distribution were conducted. The lateral and longitudinal forces of ISRFT under various load and pressure conditions were then examined in conjunction with the brush tyre model. The results demonstrate that the modified non-linear ground pressure distribution exhibits a high degree of fitting accuracy, with a maximum error of 5.27% between theoretical and simulation. The lateral force increases rapidly when the slip angle is less than 3°, and slows down when it exceeds 3°. Furthermore, the slip angle at which the maximum lateral force occurs under zero-pressure conditions is 3–5° greater than that under standard pressure. The longitudinal force exhibits a rapid increase when the slip rate exceeds −0.2, and then plateaus as the slip rate further increases. It is noteworthy that the maximum longitudinal force under zero-pressure conditions is 23.33% lower than that under standard pressure. This research lays a theoretical foundation for the mathematical modelling of ground pressure distribution of ISRFT and provides a reference for analysing tyres and vehicles mechanical characteristics.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104916"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on dynamic characteristics of inserts supporting run-flat tyre based on the modified non-linear ground pressure distribution\",\"authors\":\"Liguo Zang , Cheng Xue , Xinlei Peng , Jing Jiao , Yuxin Feng , Yulin Mao\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tyres are the sole vehicle components in direct contact with the ground, so making an accurate description of their ground pressure distribution is crucial for studying tyres and vehicles mechanical characteristics. The incorporation of an insert body on the rim leads to a significant divergence in the ground pressure distribution of inserts supporting run-flat tyre (ISRFT) under zero-pressure conditions compared to radial tyres. To elucidate the ground pressure distribution law of ISRFT, this study first develops a theoretical model of ISRFT-ground contact and proposes a modified non-linear ground pressure distribution. Subsequently, the verification and estimation of the parameters related to the modified non-linear ground pressure distribution were conducted. The lateral and longitudinal forces of ISRFT under various load and pressure conditions were then examined in conjunction with the brush tyre model. The results demonstrate that the modified non-linear ground pressure distribution exhibits a high degree of fitting accuracy, with a maximum error of 5.27% between theoretical and simulation. The lateral force increases rapidly when the slip angle is less than 3°, and slows down when it exceeds 3°. Furthermore, the slip angle at which the maximum lateral force occurs under zero-pressure conditions is 3–5° greater than that under standard pressure. The longitudinal force exhibits a rapid increase when the slip rate exceeds −0.2, and then plateaus as the slip rate further increases. It is noteworthy that the maximum longitudinal force under zero-pressure conditions is 23.33% lower than that under standard pressure. This research lays a theoretical foundation for the mathematical modelling of ground pressure distribution of ISRFT and provides a reference for analysing tyres and vehicles mechanical characteristics.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"167 \",\"pages\":\"Article 104916\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224002816\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224002816","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Investigation on dynamic characteristics of inserts supporting run-flat tyre based on the modified non-linear ground pressure distribution
Tyres are the sole vehicle components in direct contact with the ground, so making an accurate description of their ground pressure distribution is crucial for studying tyres and vehicles mechanical characteristics. The incorporation of an insert body on the rim leads to a significant divergence in the ground pressure distribution of inserts supporting run-flat tyre (ISRFT) under zero-pressure conditions compared to radial tyres. To elucidate the ground pressure distribution law of ISRFT, this study first develops a theoretical model of ISRFT-ground contact and proposes a modified non-linear ground pressure distribution. Subsequently, the verification and estimation of the parameters related to the modified non-linear ground pressure distribution were conducted. The lateral and longitudinal forces of ISRFT under various load and pressure conditions were then examined in conjunction with the brush tyre model. The results demonstrate that the modified non-linear ground pressure distribution exhibits a high degree of fitting accuracy, with a maximum error of 5.27% between theoretical and simulation. The lateral force increases rapidly when the slip angle is less than 3°, and slows down when it exceeds 3°. Furthermore, the slip angle at which the maximum lateral force occurs under zero-pressure conditions is 3–5° greater than that under standard pressure. The longitudinal force exhibits a rapid increase when the slip rate exceeds −0.2, and then plateaus as the slip rate further increases. It is noteworthy that the maximum longitudinal force under zero-pressure conditions is 23.33% lower than that under standard pressure. This research lays a theoretical foundation for the mathematical modelling of ground pressure distribution of ISRFT and provides a reference for analysing tyres and vehicles mechanical characteristics.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.