耦合 Fitzhugh-Nagumo 神经元系统的分岔动力学和 FPGA 实现

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2024-09-26 DOI:10.1016/j.chaos.2024.115520
{"title":"耦合 Fitzhugh-Nagumo 神经元系统的分岔动力学和 FPGA 实现","authors":"","doi":"10.1016/j.chaos.2024.115520","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to studying the dynamical behaviors of the coupled FHN neural system by the discrete implicit mapping method, including bifurcation, coexistence, firing behaviors and synchronization. Two improved Fitzhugh-Nagumo (FHN) neurons are coupled through an asymmetric electrical synapse to investigate the effect of coupling strength on the firing behavior of neuronal networks, which is crucial to the progress of brain science. The types and stability of time-varying equilibrium points in the FHN neuron model are studied, and the corresponding discrete mapping model is established. The unstable periodic orbits hidden in chaos in the system are explored, and the mechanism of various bifurcations is explained through global eigenvalues. Simultaneously, the coexistence firing patterns are studied by basin of attraction, and the synchronization behavior of neural system is investigated through the normalized mean synchronization error (NMSE). Moreover, FPGA is employed for circuit implementation of the coupled neuronal system, and the correctness of theoretical results is verified. The results of this paper may help to better understand the firing and synchronization mechanisms of neural networks, which have important significance for the treatment of nervous system diseases and the development of neuroscience.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation dynamics and FPGA implementation of coupled Fitzhugh-Nagumo neuronal system\",\"authors\":\"\",\"doi\":\"10.1016/j.chaos.2024.115520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is devoted to studying the dynamical behaviors of the coupled FHN neural system by the discrete implicit mapping method, including bifurcation, coexistence, firing behaviors and synchronization. Two improved Fitzhugh-Nagumo (FHN) neurons are coupled through an asymmetric electrical synapse to investigate the effect of coupling strength on the firing behavior of neuronal networks, which is crucial to the progress of brain science. The types and stability of time-varying equilibrium points in the FHN neuron model are studied, and the corresponding discrete mapping model is established. The unstable periodic orbits hidden in chaos in the system are explored, and the mechanism of various bifurcations is explained through global eigenvalues. Simultaneously, the coexistence firing patterns are studied by basin of attraction, and the synchronization behavior of neural system is investigated through the normalized mean synchronization error (NMSE). Moreover, FPGA is employed for circuit implementation of the coupled neuronal system, and the correctness of theoretical results is verified. The results of this paper may help to better understand the firing and synchronization mechanisms of neural networks, which have important significance for the treatment of nervous system diseases and the development of neuroscience.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924010725\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924010725","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于利用离散隐含映射法研究耦合 FHN 神经系统的动力学行为,包括分岔、共存、发射行为和同步。通过非对称电突触耦合两个改进的 Fitzhugh-Nagumo (FHN) 神经元,研究耦合强度对神经元网络发射行为的影响,这对脑科学的发展至关重要。研究了 FHN 神经元模型中时变平衡点的类型和稳定性,并建立了相应的离散映射模型。探讨了系统中隐藏在混沌中的不稳定周期轨道,并通过全局特征值解释了各种分岔的机理。同时,通过吸引盆地研究了共存发射模式,并通过归一化平均同步误差(NMSE)研究了神经系统的同步行为。此外,还采用 FPGA 实现了耦合神经元系统的电路,并验证了理论结果的正确性。本文的研究结果有助于更好地理解神经网络的发射和同步机制,对神经系统疾病的治疗和神经科学的发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bifurcation dynamics and FPGA implementation of coupled Fitzhugh-Nagumo neuronal system
This paper is devoted to studying the dynamical behaviors of the coupled FHN neural system by the discrete implicit mapping method, including bifurcation, coexistence, firing behaviors and synchronization. Two improved Fitzhugh-Nagumo (FHN) neurons are coupled through an asymmetric electrical synapse to investigate the effect of coupling strength on the firing behavior of neuronal networks, which is crucial to the progress of brain science. The types and stability of time-varying equilibrium points in the FHN neuron model are studied, and the corresponding discrete mapping model is established. The unstable periodic orbits hidden in chaos in the system are explored, and the mechanism of various bifurcations is explained through global eigenvalues. Simultaneously, the coexistence firing patterns are studied by basin of attraction, and the synchronization behavior of neural system is investigated through the normalized mean synchronization error (NMSE). Moreover, FPGA is employed for circuit implementation of the coupled neuronal system, and the correctness of theoretical results is verified. The results of this paper may help to better understand the firing and synchronization mechanisms of neural networks, which have important significance for the treatment of nervous system diseases and the development of neuroscience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
On the two nonzero boundary problems of the AB system with multiple poles AI-Lorenz: A physics-data-driven framework for Black-Box and Gray-Box identification of chaotic systems with symbolic regression Analysis of rogue wave in the mid-infrared supercontinuum under femtosecond weak seed pulse conditions based on deep learning Virtual inertia and intelligent control assisted frequency regulation of time-delayed power system under DoS attacks Bifurcation dynamics and FPGA implementation of coupled Fitzhugh-Nagumo neuronal system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1