利用环境制图进行室内雷达幽灵识别的数据驱动方法

Ruizhi Liu;Xinghui Song;Jiawei Qian;Shuai Hao;Yue Lin;Hongtao Xu
{"title":"利用环境制图进行室内雷达幽灵识别的数据驱动方法","authors":"Ruizhi Liu;Xinghui Song;Jiawei Qian;Shuai Hao;Yue Lin;Hongtao Xu","doi":"10.1109/TRS.2024.3456891","DOIUrl":null,"url":null,"abstract":"Millimeter-wave (mmWave) radar has been widely applied in target detection. However, due to multipath and occlusion, radar often detects ghosts, especially in indoor environments. Existing solutions are mostly tailored to specific, simplified scenarios. To identify radar ghosts in diverse and complex indoor environments, we propose a data-driven approach. A thoughtful indoor radar ghost dataset is created with a multimodal data acquisition and automatic annotation system. And PairwiseNet, an end-to-end deep neural network adept at handling point-pair relationships within sparse point clouds, is proposed for radar ghost recognition. Multiframe accumulation is also implemented in PairwiseNet. To further enhance PairwiseNet, an additional network incorporating grid maps and U-Net is developed for constructing environmental maps from sequential point clouds. This network is trained through cross-modal distillation, with a depth camera as the teacher. Finally, a series of experiments validates the effectiveness of the proposed method in identifying indoor radar ghosts and autonomously constructing environmental maps. The classification accuracy on the test set reaches 96.0%, accurately identifying ghosts in the vast majority of cases.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"910-923"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Data-Driven Method for Indoor Radar Ghost Recognition With Environmental Mapping\",\"authors\":\"Ruizhi Liu;Xinghui Song;Jiawei Qian;Shuai Hao;Yue Lin;Hongtao Xu\",\"doi\":\"10.1109/TRS.2024.3456891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Millimeter-wave (mmWave) radar has been widely applied in target detection. However, due to multipath and occlusion, radar often detects ghosts, especially in indoor environments. Existing solutions are mostly tailored to specific, simplified scenarios. To identify radar ghosts in diverse and complex indoor environments, we propose a data-driven approach. A thoughtful indoor radar ghost dataset is created with a multimodal data acquisition and automatic annotation system. And PairwiseNet, an end-to-end deep neural network adept at handling point-pair relationships within sparse point clouds, is proposed for radar ghost recognition. Multiframe accumulation is also implemented in PairwiseNet. To further enhance PairwiseNet, an additional network incorporating grid maps and U-Net is developed for constructing environmental maps from sequential point clouds. This network is trained through cross-modal distillation, with a depth camera as the teacher. Finally, a series of experiments validates the effectiveness of the proposed method in identifying indoor radar ghosts and autonomously constructing environmental maps. The classification accuracy on the test set reaches 96.0%, accurately identifying ghosts in the vast majority of cases.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"2 \",\"pages\":\"910-923\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10672544/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10672544/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

毫米波雷达已广泛应用于目标探测。然而,由于多径和遮挡等原因,雷达经常会探测到幽灵,尤其是在室内环境中。现有的解决方案大多针对特定的简化场景。为了在多样化和复杂的室内环境中识别雷达鬼影,我们提出了一种数据驱动的方法。我们利用多模态数据采集和自动标注系统创建了一个贴心的室内雷达幽灵数据集。PairwiseNet 是一种端到端的深度神经网络,善于处理稀疏点云中的点对关系,被用于雷达鬼影的识别。PairwiseNet 还实现了多帧累积。为了进一步增强 PairwiseNet,还开发了一个包含网格图和 U-Net 的附加网络,用于从连续点云中构建环境图。该网络通过跨模态提炼进行训练,并以深度摄像头为教师。最后,一系列实验验证了所提方法在识别室内雷达幽灵和自主构建环境地图方面的有效性。测试集的分类准确率达到 96.0%,在绝大多数情况下都能准确识别出幽灵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Data-Driven Method for Indoor Radar Ghost Recognition With Environmental Mapping
Millimeter-wave (mmWave) radar has been widely applied in target detection. However, due to multipath and occlusion, radar often detects ghosts, especially in indoor environments. Existing solutions are mostly tailored to specific, simplified scenarios. To identify radar ghosts in diverse and complex indoor environments, we propose a data-driven approach. A thoughtful indoor radar ghost dataset is created with a multimodal data acquisition and automatic annotation system. And PairwiseNet, an end-to-end deep neural network adept at handling point-pair relationships within sparse point clouds, is proposed for radar ghost recognition. Multiframe accumulation is also implemented in PairwiseNet. To further enhance PairwiseNet, an additional network incorporating grid maps and U-Net is developed for constructing environmental maps from sequential point clouds. This network is trained through cross-modal distillation, with a depth camera as the teacher. Finally, a series of experiments validates the effectiveness of the proposed method in identifying indoor radar ghosts and autonomously constructing environmental maps. The classification accuracy on the test set reaches 96.0%, accurately identifying ghosts in the vast majority of cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to “Engineering Constraints and Application Regimes of Quantum Radar” Range–Doppler Resolution Enhancement of Ground-Based Radar by Data Extrapolation Technique Polarization-Agile Jamming Suppression for Dual-Polarized Digital Array Radars Identification and High-Accuracy Range Estimation With Doppler Tags in Radar Applications Stepped-Frequency PMCW Waveforms for Automotive Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1