实践中的人工智能公平性:范式、挑战和前景

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Ai Magazine Pub Date : 2024-09-22 DOI:10.1002/aaai.12189
Wenbin Zhang
{"title":"实践中的人工智能公平性:范式、挑战和前景","authors":"Wenbin Zhang","doi":"10.1002/aaai.12189","DOIUrl":null,"url":null,"abstract":"<p>Understanding and correcting algorithmic bias in artificial intelligence (AI) has become increasingly important, leading to a surge in research on AI fairness within both the AI community and broader society. Traditionally, this research operates within the constrained supervised learning paradigm, assuming the presence of class labels, independent and identically distributed (IID) data, and batch-based learning necessitating the simultaneous availability of all training data. However, in practice, class labels may be absent due to censoring, data is often represented using non-IID graph structures that capture connections among individual units, and data can arrive and evolve over time. These prevalent real-world data representations limit the applicability of existing fairness literature, which typically addresses fairness in static and tabular supervised learning settings. This paper reviews recent advances in AI fairness aimed at bridging these gaps for practical deployment in real-world scenarios. Additionally, opportunities are envisioned by highlighting the limitations and significant potential for real applications.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 3","pages":"386-395"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12189","citationCount":"0","resultStr":"{\"title\":\"AI fairness in practice: Paradigm, challenges, and prospects\",\"authors\":\"Wenbin Zhang\",\"doi\":\"10.1002/aaai.12189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding and correcting algorithmic bias in artificial intelligence (AI) has become increasingly important, leading to a surge in research on AI fairness within both the AI community and broader society. Traditionally, this research operates within the constrained supervised learning paradigm, assuming the presence of class labels, independent and identically distributed (IID) data, and batch-based learning necessitating the simultaneous availability of all training data. However, in practice, class labels may be absent due to censoring, data is often represented using non-IID graph structures that capture connections among individual units, and data can arrive and evolve over time. These prevalent real-world data representations limit the applicability of existing fairness literature, which typically addresses fairness in static and tabular supervised learning settings. This paper reviews recent advances in AI fairness aimed at bridging these gaps for practical deployment in real-world scenarios. Additionally, opportunities are envisioned by highlighting the limitations and significant potential for real applications.</p>\",\"PeriodicalId\":7854,\"journal\":{\"name\":\"Ai Magazine\",\"volume\":\"45 3\",\"pages\":\"386-395\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12189\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Magazine\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12189\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12189","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

了解和纠正人工智能(AI)中的算法偏差已变得越来越重要,这导致人工智能界和更广泛的社会对人工智能公平性的研究激增。传统上,这项研究是在受限的监督学习范式下进行的,假定存在类标签、独立且同分布(IID)的数据,以及基于批量的学习(必须同时提供所有训练数据)。然而,在实践中,由于删减的原因,类标签可能不存在,数据通常使用非独立且同分布(IID)的图结构来表示,以捕捉单个单元之间的联系,而且数据可能随着时间的推移而到达和演变。这些现实世界中普遍存在的数据表示方式限制了现有公平性文献的适用性,因为这些文献通常涉及静态和表格监督学习环境中的公平性问题。本文回顾了人工智能公平性方面的最新进展,旨在缩小这些差距,以便在现实世界场景中进行实际部署。此外,本文还通过强调实际应用的局限性和巨大潜力,展望了各种机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI fairness in practice: Paradigm, challenges, and prospects

Understanding and correcting algorithmic bias in artificial intelligence (AI) has become increasingly important, leading to a surge in research on AI fairness within both the AI community and broader society. Traditionally, this research operates within the constrained supervised learning paradigm, assuming the presence of class labels, independent and identically distributed (IID) data, and batch-based learning necessitating the simultaneous availability of all training data. However, in practice, class labels may be absent due to censoring, data is often represented using non-IID graph structures that capture connections among individual units, and data can arrive and evolve over time. These prevalent real-world data representations limit the applicability of existing fairness literature, which typically addresses fairness in static and tabular supervised learning settings. This paper reviews recent advances in AI fairness aimed at bridging these gaps for practical deployment in real-world scenarios. Additionally, opportunities are envisioned by highlighting the limitations and significant potential for real applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
期刊最新文献
Issue Information AI fairness in practice: Paradigm, challenges, and prospects Toward the confident deployment of real-world reinforcement learning agents Towards robust visual understanding: A paradigm shift in computer vision from recognition to reasoning Efficient and robust sequential decision making algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1