{"title":"实践中的人工智能公平性:范式、挑战和前景","authors":"Wenbin Zhang","doi":"10.1002/aaai.12189","DOIUrl":null,"url":null,"abstract":"<p>Understanding and correcting algorithmic bias in artificial intelligence (AI) has become increasingly important, leading to a surge in research on AI fairness within both the AI community and broader society. Traditionally, this research operates within the constrained supervised learning paradigm, assuming the presence of class labels, independent and identically distributed (IID) data, and batch-based learning necessitating the simultaneous availability of all training data. However, in practice, class labels may be absent due to censoring, data is often represented using non-IID graph structures that capture connections among individual units, and data can arrive and evolve over time. These prevalent real-world data representations limit the applicability of existing fairness literature, which typically addresses fairness in static and tabular supervised learning settings. This paper reviews recent advances in AI fairness aimed at bridging these gaps for practical deployment in real-world scenarios. Additionally, opportunities are envisioned by highlighting the limitations and significant potential for real applications.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 3","pages":"386-395"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12189","citationCount":"0","resultStr":"{\"title\":\"AI fairness in practice: Paradigm, challenges, and prospects\",\"authors\":\"Wenbin Zhang\",\"doi\":\"10.1002/aaai.12189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding and correcting algorithmic bias in artificial intelligence (AI) has become increasingly important, leading to a surge in research on AI fairness within both the AI community and broader society. Traditionally, this research operates within the constrained supervised learning paradigm, assuming the presence of class labels, independent and identically distributed (IID) data, and batch-based learning necessitating the simultaneous availability of all training data. However, in practice, class labels may be absent due to censoring, data is often represented using non-IID graph structures that capture connections among individual units, and data can arrive and evolve over time. These prevalent real-world data representations limit the applicability of existing fairness literature, which typically addresses fairness in static and tabular supervised learning settings. This paper reviews recent advances in AI fairness aimed at bridging these gaps for practical deployment in real-world scenarios. Additionally, opportunities are envisioned by highlighting the limitations and significant potential for real applications.</p>\",\"PeriodicalId\":7854,\"journal\":{\"name\":\"Ai Magazine\",\"volume\":\"45 3\",\"pages\":\"386-395\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12189\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Magazine\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12189\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12189","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
AI fairness in practice: Paradigm, challenges, and prospects
Understanding and correcting algorithmic bias in artificial intelligence (AI) has become increasingly important, leading to a surge in research on AI fairness within both the AI community and broader society. Traditionally, this research operates within the constrained supervised learning paradigm, assuming the presence of class labels, independent and identically distributed (IID) data, and batch-based learning necessitating the simultaneous availability of all training data. However, in practice, class labels may be absent due to censoring, data is often represented using non-IID graph structures that capture connections among individual units, and data can arrive and evolve over time. These prevalent real-world data representations limit the applicability of existing fairness literature, which typically addresses fairness in static and tabular supervised learning settings. This paper reviews recent advances in AI fairness aimed at bridging these gaps for practical deployment in real-world scenarios. Additionally, opportunities are envisioned by highlighting the limitations and significant potential for real applications.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.