Erika Gömöryová, Richard Hrivnák, Dobromil Galvánek, Judita Kochjarová, Katarína Skokanová, Michal Slezák, Ivana Svitková, Barbora Šingliarová, Stanislav Španiel, Dušan Gömöry
{"title":"入侵植物的空间模式及其对沿河走廊土壤微生物活动和多样性的影响","authors":"Erika Gömöryová, Richard Hrivnák, Dobromil Galvánek, Judita Kochjarová, Katarína Skokanová, Michal Slezák, Ivana Svitková, Barbora Šingliarová, Stanislav Španiel, Dušan Gömöry","doi":"10.1007/s11104-024-06958-3","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Invasive species represent a threat to the conservation of biological systems. Riparian ecosystems are vulnerable to plant invasions, as waterflow facilitates the dispersal of plant propagules, while invasive species may subsequently impact soil, including soil microbial communities. Downstream connectivity among disparate riverine segments is expected to cause spatial continuity of abiotic and biotic components of riparian ecosystems.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We studied diversity of microbial communities in three headwater streams in Central Europe. Plant diversity, soil properties and soil microbiota were assessed on 20 sample plots per river. Soil microbial activity and community-level physiological profiling were used to study the soil microbial community.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>While the α-diversity of plants and soil microbiota was similar among rivers, plant communities were substantially more differentiated than microbial communities. Richness in alien and invasive plants significantly differed among rivers, which was reflected in different spatial patterns of microbial activity and diversity. A high level of spatial continuity was observed in the Kysuca river with straightened riverbed and artificial surfaces in the adjacent areas. The cover of invasive plants affects the composition of microbial functional groups of riverbed soils.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The expectation of spatial continuity of riverbed soil properties including those of soil microbiota caused by connectivity between different river segments was only partially fulfilled. Spatial continuity strongly depends on the environmental setting and stream characteristics of a particular river. The presence of invasive herbs affected the functional composition of soil microbiota but had no effect on microbial activity and diversity.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial patterns and effects of invasive plants on soil microbial activity and diversity along river corridors\",\"authors\":\"Erika Gömöryová, Richard Hrivnák, Dobromil Galvánek, Judita Kochjarová, Katarína Skokanová, Michal Slezák, Ivana Svitková, Barbora Šingliarová, Stanislav Španiel, Dušan Gömöry\",\"doi\":\"10.1007/s11104-024-06958-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background and aims</h3><p>Invasive species represent a threat to the conservation of biological systems. Riparian ecosystems are vulnerable to plant invasions, as waterflow facilitates the dispersal of plant propagules, while invasive species may subsequently impact soil, including soil microbial communities. Downstream connectivity among disparate riverine segments is expected to cause spatial continuity of abiotic and biotic components of riparian ecosystems.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>We studied diversity of microbial communities in three headwater streams in Central Europe. Plant diversity, soil properties and soil microbiota were assessed on 20 sample plots per river. Soil microbial activity and community-level physiological profiling were used to study the soil microbial community.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>While the α-diversity of plants and soil microbiota was similar among rivers, plant communities were substantially more differentiated than microbial communities. Richness in alien and invasive plants significantly differed among rivers, which was reflected in different spatial patterns of microbial activity and diversity. A high level of spatial continuity was observed in the Kysuca river with straightened riverbed and artificial surfaces in the adjacent areas. The cover of invasive plants affects the composition of microbial functional groups of riverbed soils.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>The expectation of spatial continuity of riverbed soil properties including those of soil microbiota caused by connectivity between different river segments was only partially fulfilled. Spatial continuity strongly depends on the environmental setting and stream characteristics of a particular river. The presence of invasive herbs affected the functional composition of soil microbiota but had no effect on microbial activity and diversity.</p>\",\"PeriodicalId\":20223,\"journal\":{\"name\":\"Plant and Soil\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11104-024-06958-3\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-06958-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Spatial patterns and effects of invasive plants on soil microbial activity and diversity along river corridors
Background and aims
Invasive species represent a threat to the conservation of biological systems. Riparian ecosystems are vulnerable to plant invasions, as waterflow facilitates the dispersal of plant propagules, while invasive species may subsequently impact soil, including soil microbial communities. Downstream connectivity among disparate riverine segments is expected to cause spatial continuity of abiotic and biotic components of riparian ecosystems.
Methods
We studied diversity of microbial communities in three headwater streams in Central Europe. Plant diversity, soil properties and soil microbiota were assessed on 20 sample plots per river. Soil microbial activity and community-level physiological profiling were used to study the soil microbial community.
Results
While the α-diversity of plants and soil microbiota was similar among rivers, plant communities were substantially more differentiated than microbial communities. Richness in alien and invasive plants significantly differed among rivers, which was reflected in different spatial patterns of microbial activity and diversity. A high level of spatial continuity was observed in the Kysuca river with straightened riverbed and artificial surfaces in the adjacent areas. The cover of invasive plants affects the composition of microbial functional groups of riverbed soils.
Conclusion
The expectation of spatial continuity of riverbed soil properties including those of soil microbiota caused by connectivity between different river segments was only partially fulfilled. Spatial continuity strongly depends on the environmental setting and stream characteristics of a particular river. The presence of invasive herbs affected the functional composition of soil microbiota but had no effect on microbial activity and diversity.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.