通过对磁子温度的非局部操纵增强自旋泵浦功能

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-09-26 DOI:10.1016/j.matt.2024.08.023
Sang J. Park, Phuoc Cao Van, Min-Gu Kang, Hyeon-Jung Jung, Gi-Yeop Kim, Si-Young Choi, Jung-Woo Yoo, Byong-Guk Park, Se Kwon Kim, Jong-Ryul Jeong, Hyungyu Jin
{"title":"通过对磁子温度的非局部操纵增强自旋泵浦功能","authors":"Sang J. Park, Phuoc Cao Van, Min-Gu Kang, Hyeon-Jung Jung, Gi-Yeop Kim, Si-Young Choi, Jung-Woo Yoo, Byong-Guk Park, Se Kwon Kim, Jong-Ryul Jeong, Hyungyu Jin","doi":"10.1016/j.matt.2024.08.023","DOIUrl":null,"url":null,"abstract":"To realize magnonic devices, finding a way to make magnons better transport and efficiently pump their spin angular momentum across a ferromagnetic insulator (FMI)/normal metal (NM) interface is crucial. Here, we demonstrate that modulating magnon temperature in an FMI offers an effective way to manipulate magnon transport and can lead to significantly enhanced spin pumping when the process is driven by a temperature gradient. This modulation is achieved by engineering the interface between the substrate and the FMI in a substrate/FMI/NM heterostructure, such that the interface provides stronger energy exchange between phonons in the substrate and magnons in the FMI. We report a 265% enhanced spin Seebeck effect, which represents the thermally driven spin-pumping process, and a 122% enhanced magnon current density participating in the spin pumping. Theoretical and experimental evidence coherently indicate that the observed enhancement should be attributed to the modified magnon temperature profile in the FMI.","PeriodicalId":388,"journal":{"name":"Matter","volume":"6 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing spin pumping by nonlocal manipulation of magnon temperature\",\"authors\":\"Sang J. Park, Phuoc Cao Van, Min-Gu Kang, Hyeon-Jung Jung, Gi-Yeop Kim, Si-Young Choi, Jung-Woo Yoo, Byong-Guk Park, Se Kwon Kim, Jong-Ryul Jeong, Hyungyu Jin\",\"doi\":\"10.1016/j.matt.2024.08.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To realize magnonic devices, finding a way to make magnons better transport and efficiently pump their spin angular momentum across a ferromagnetic insulator (FMI)/normal metal (NM) interface is crucial. Here, we demonstrate that modulating magnon temperature in an FMI offers an effective way to manipulate magnon transport and can lead to significantly enhanced spin pumping when the process is driven by a temperature gradient. This modulation is achieved by engineering the interface between the substrate and the FMI in a substrate/FMI/NM heterostructure, such that the interface provides stronger energy exchange between phonons in the substrate and magnons in the FMI. We report a 265% enhanced spin Seebeck effect, which represents the thermally driven spin-pumping process, and a 122% enhanced magnon current density participating in the spin pumping. Theoretical and experimental evidence coherently indicate that the observed enhancement should be attributed to the modified magnon temperature profile in the FMI.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2024.08.023\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.08.023","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要实现磁子器件,找到一种方法让磁子在铁磁绝缘体(FMI)/普通金属(NM)界面上更好地传输和高效地泵送其自旋角动量至关重要。在这里,我们证明了在铁磁绝缘体中调制磁子温度是操纵磁子传输的有效方法,并能在温度梯度的驱动下显著增强自旋泵。这种调制是通过在基底/FMI/NM 异质结构中对基底和 FMI 之间的界面进行工程设计来实现的,从而使界面在基底中的声子和 FMI 中的磁子之间提供更强的能量交换。我们报告了增强了 265% 的自旋塞贝克效应(代表热驱动的自旋泵过程)和增强了 122% 的参与自旋泵的磁子电流密度。理论和实验证据一致表明,观察到的增强应归因于 FMI 中修改过的磁子温度曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing spin pumping by nonlocal manipulation of magnon temperature
To realize magnonic devices, finding a way to make magnons better transport and efficiently pump their spin angular momentum across a ferromagnetic insulator (FMI)/normal metal (NM) interface is crucial. Here, we demonstrate that modulating magnon temperature in an FMI offers an effective way to manipulate magnon transport and can lead to significantly enhanced spin pumping when the process is driven by a temperature gradient. This modulation is achieved by engineering the interface between the substrate and the FMI in a substrate/FMI/NM heterostructure, such that the interface provides stronger energy exchange between phonons in the substrate and magnons in the FMI. We report a 265% enhanced spin Seebeck effect, which represents the thermally driven spin-pumping process, and a 122% enhanced magnon current density participating in the spin pumping. Theoretical and experimental evidence coherently indicate that the observed enhancement should be attributed to the modified magnon temperature profile in the FMI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
A ferroelectric living interface for fine-tuned exosome secretion toward physiology-mimetic neurovascular remodeling Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback Massively multiplexed optical recording with polychromatic DNA frameworks Polyfunctional eutectogels with multiple hydrogen-bond-shielded amorphous networks for soft ionotronics Brilliant colorful daytime radiative cooling coating mimicking scarab beetle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1