原位功能化极性聚噻吩基有机电化学晶体管与体外模型的接口

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-09-27 DOI:10.1021/acsami.4c09197
Sebastian Buchmann, Pepijn Stoop, Kim Roekevisch, Saumey Jain, Renee Kroon, Christian Müller, Mahiar M. Hamedi, Erica Zeglio, Anna Herland
{"title":"原位功能化极性聚噻吩基有机电化学晶体管与体外模型的接口","authors":"Sebastian Buchmann, Pepijn Stoop, Kim Roekevisch, Saumey Jain, Renee Kroon, Christian Müller, Mahiar M. Hamedi, Erica Zeglio, Anna Herland","doi":"10.1021/acsami.4c09197","DOIUrl":null,"url":null,"abstract":"Organic mixed ionic-electronic conductors are promising materials for interfacing and monitoring biological systems, with the aim of overcoming current challenges based on the mismatch between biological materials and convectional inorganic conductors. The conjugated polymer/polyelectrolyte complex poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT/PSS) is, up to date, the most widely used polymer for in vitro or in vivo measurements in the field of organic bioelectronics. However, PEDOT/PSS organic electrochemical transistors (OECTs) are limited by depletion mode operation and lack chemical groups that enable synthetic modifications for biointerfacing. Recently introduced thiophene-based polymers with oligoether side chains can operate in accumulation mode, and their chemical structure can be tuned during synthesis, for example, by the introduction of hydroxylated side chains. Here, we introduce a new thiophene-based conjugated polymer, p(g<sub>4</sub>2T-T)-8% OH, where 8% of the glycol side chains are functionalized with a hydroxyl group. We report for the first time the compatibility of conjugated polymers containing ethylene glycol side chains in direct contact with cells. The additional hydroxyl group allows covalent modification of the surface of polymer films, enabling fine-tuning of the surface interaction properties of p(g<sub>4</sub>2T-T)-8% OH with biological materials, either hindering or promoting cell adhesion. We further use p(g<sub>4</sub>2T-T)-8% OH to fabricate the OECTs and demonstrate for the first time the monitoring of epithelial barrier formation of Caco-2 cells in vitro using accumulation mode OECTs. The conjugated polymer p(g<sub>4</sub>2T-T)-8% OH allows organic-electronic-based materials to be easily modified and optimized to interface and monitor biological systems.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Functionalization of Polar Polythiophene-Based Organic Electrochemical Transistor to Interface In Vitro Models\",\"authors\":\"Sebastian Buchmann, Pepijn Stoop, Kim Roekevisch, Saumey Jain, Renee Kroon, Christian Müller, Mahiar M. Hamedi, Erica Zeglio, Anna Herland\",\"doi\":\"10.1021/acsami.4c09197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic mixed ionic-electronic conductors are promising materials for interfacing and monitoring biological systems, with the aim of overcoming current challenges based on the mismatch between biological materials and convectional inorganic conductors. The conjugated polymer/polyelectrolyte complex poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT/PSS) is, up to date, the most widely used polymer for in vitro or in vivo measurements in the field of organic bioelectronics. However, PEDOT/PSS organic electrochemical transistors (OECTs) are limited by depletion mode operation and lack chemical groups that enable synthetic modifications for biointerfacing. Recently introduced thiophene-based polymers with oligoether side chains can operate in accumulation mode, and their chemical structure can be tuned during synthesis, for example, by the introduction of hydroxylated side chains. Here, we introduce a new thiophene-based conjugated polymer, p(g<sub>4</sub>2T-T)-8% OH, where 8% of the glycol side chains are functionalized with a hydroxyl group. We report for the first time the compatibility of conjugated polymers containing ethylene glycol side chains in direct contact with cells. The additional hydroxyl group allows covalent modification of the surface of polymer films, enabling fine-tuning of the surface interaction properties of p(g<sub>4</sub>2T-T)-8% OH with biological materials, either hindering or promoting cell adhesion. We further use p(g<sub>4</sub>2T-T)-8% OH to fabricate the OECTs and demonstrate for the first time the monitoring of epithelial barrier formation of Caco-2 cells in vitro using accumulation mode OECTs. The conjugated polymer p(g<sub>4</sub>2T-T)-8% OH allows organic-electronic-based materials to be easily modified and optimized to interface and monitor biological systems.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c09197\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c09197","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有机离子电子混合导体是一种很有前途的材料,可用于连接和监测生物系统,从而克服目前生物材料与对流无机导体之间不匹配所带来的挑战。迄今为止,共轭聚合物/聚电解质复合物聚(3,4-亚乙二氧基噻吩):聚苯乙烯磺酸盐(PEDOT/PSS)是有机生物电子学领域用于体外或体内测量最广泛的聚合物。然而,PEDOT/PSS 有机电化学晶体管(OECTs)受到耗尽模式操作的限制,并且缺乏可用于生物界面合成修饰的化学基团。最近推出的带有寡醚侧链的噻吩基聚合物可以在蓄积模式下工作,其化学结构可以在合成过程中进行调整,例如通过引入羟基侧链。在这里,我们介绍一种新型噻吩基共轭聚合物 p(g42T-T)-8% OH,其中 8% 的乙二醇侧链被羟基官能化。我们首次报道了含有乙二醇侧链的共轭聚合物与细胞直接接触时的相容性。额外的羟基可以对聚合物薄膜的表面进行共价改性,从而微调 p(g42T-T)-8% OH 与生物材料的表面相互作用特性,阻碍或促进细胞粘附。我们进一步利用 p(g42T-T)-8% OH 制备了 OECTs,并首次展示了利用积聚模式 OECTs 在体外监测 Caco-2 细胞上皮屏障形成的情况。p(g42T-T)-8%OH共轭聚合物使基于有机电子的材料易于改性和优化,以连接和监测生物系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Situ Functionalization of Polar Polythiophene-Based Organic Electrochemical Transistor to Interface In Vitro Models
Organic mixed ionic-electronic conductors are promising materials for interfacing and monitoring biological systems, with the aim of overcoming current challenges based on the mismatch between biological materials and convectional inorganic conductors. The conjugated polymer/polyelectrolyte complex poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT/PSS) is, up to date, the most widely used polymer for in vitro or in vivo measurements in the field of organic bioelectronics. However, PEDOT/PSS organic electrochemical transistors (OECTs) are limited by depletion mode operation and lack chemical groups that enable synthetic modifications for biointerfacing. Recently introduced thiophene-based polymers with oligoether side chains can operate in accumulation mode, and their chemical structure can be tuned during synthesis, for example, by the introduction of hydroxylated side chains. Here, we introduce a new thiophene-based conjugated polymer, p(g42T-T)-8% OH, where 8% of the glycol side chains are functionalized with a hydroxyl group. We report for the first time the compatibility of conjugated polymers containing ethylene glycol side chains in direct contact with cells. The additional hydroxyl group allows covalent modification of the surface of polymer films, enabling fine-tuning of the surface interaction properties of p(g42T-T)-8% OH with biological materials, either hindering or promoting cell adhesion. We further use p(g42T-T)-8% OH to fabricate the OECTs and demonstrate for the first time the monitoring of epithelial barrier formation of Caco-2 cells in vitro using accumulation mode OECTs. The conjugated polymer p(g42T-T)-8% OH allows organic-electronic-based materials to be easily modified and optimized to interface and monitor biological systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Development of a Highly Sensitive and Stretchable Charge-Transfer Fiber Strain Sensor for Wearable Applications Transient Phase-Mediated Li+ Transportation in the Lithium Lanthanum Titanate Solid-State Electrolyte Manipulation of Zn Deposition Behavior to Achieve High-Rate Aqueous Zinc Batteries via High Valence Zirconium Ions Thermodynamically and Dynamically Boosted Electrocatalytic Iodine Conversion with Hydroxyl Groups for High-Efficiency Zinc–Iodine Batteries Controlled Vapor–Liquid–Solid Growth of Long and Remarkably Thin Pb1–xSnxTe Nanowires with Strain-Tunable Ferroelectric Phase Transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1