尽量降低表面反应性以提高 H2 - H3 相变可逆性的电解质策略

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Central Science Pub Date : 2024-09-27 DOI:10.1039/D4TA05216A
J. Brandon Adamo and Arumugam Manthiram
{"title":"尽量降低表面反应性以提高 H2 - H3 相变可逆性的电解质策略","authors":"J. Brandon Adamo and Arumugam Manthiram","doi":"10.1039/D4TA05216A","DOIUrl":null,"url":null,"abstract":"<p >High-nickel layered oxide cathodes are promising candidates for application in next-generation lithium-ion batteries. However, they are plagued by high surface reactivity with electrolytes and poor reversibility of the high voltage H2–H3 phase transition. While electrolytes generally impact cathode surface reactivity, herein we demonstrate that the use of advanced electrolytes can greatly improve the reversibility of the bulk H2–H3 phase transition due to a reduction in surface reactivity and resultant surface reconstruction. We compare the ability of several common electrolyte enhancement strategies to improve the reversibility of the H2–H3 phase transition with a LiNiO<small><sub>2</sub></small> cathode. We find that while all strategies tested in this study improve the reversibility of the phase transition, a combination of fluorinated solvents and an LiPO<small><sub>2</sub></small>F<small><sub>2</sub></small> additive yields the best results in galvanostatic cycling. We quantitatively measure the capacity loss in the H2–H3 phase transition region with second derivative analysis and show that the degree of capacity fade is different in different phase transition regions. With galvanostatic intermittent titration technique and galvanostatic electrochemical impedance spectroscopy, we find that advanced electrolytes can reduce the resistance growth with cycling when passing through the H2–H3 phase transition. With cyclic step chronoamperometry, we examine the evolution of the high-rate performance of the phase transition in each electrolyte and find that a combination of surface stabilization and conductivity are needed to optimize high-rate performance.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrolyte strategies to minimize surface reactivity for improved reversibility of the H2–H3 phase transition†\",\"authors\":\"J. Brandon Adamo and Arumugam Manthiram\",\"doi\":\"10.1039/D4TA05216A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >High-nickel layered oxide cathodes are promising candidates for application in next-generation lithium-ion batteries. However, they are plagued by high surface reactivity with electrolytes and poor reversibility of the high voltage H2–H3 phase transition. While electrolytes generally impact cathode surface reactivity, herein we demonstrate that the use of advanced electrolytes can greatly improve the reversibility of the bulk H2–H3 phase transition due to a reduction in surface reactivity and resultant surface reconstruction. We compare the ability of several common electrolyte enhancement strategies to improve the reversibility of the H2–H3 phase transition with a LiNiO<small><sub>2</sub></small> cathode. We find that while all strategies tested in this study improve the reversibility of the phase transition, a combination of fluorinated solvents and an LiPO<small><sub>2</sub></small>F<small><sub>2</sub></small> additive yields the best results in galvanostatic cycling. We quantitatively measure the capacity loss in the H2–H3 phase transition region with second derivative analysis and show that the degree of capacity fade is different in different phase transition regions. With galvanostatic intermittent titration technique and galvanostatic electrochemical impedance spectroscopy, we find that advanced electrolytes can reduce the resistance growth with cycling when passing through the H2–H3 phase transition. With cyclic step chronoamperometry, we examine the evolution of the high-rate performance of the phase transition in each electrolyte and find that a combination of surface stabilization and conductivity are needed to optimize high-rate performance.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta05216a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta05216a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高镍层状氧化物阴极有望应用于下一代锂离子电池。然而,它们与电解质的表面反应速度快,高压 H2 - H3 相变的可逆性差。虽然电解质通常会影响阴极表面的反应性,但我们在本文中证明,使用先进的电解质可以大大提高大量 H2 - H3 相变的可逆性,这是因为表面反应性降低以及由此产生的表面重构。我们比较了几种常见的电解质增强策略改善二氧化镍锂阴极 H2 - H3 相变可逆性的能力。我们发现,虽然本研究中测试的所有策略都能改善相变的可逆性,但氟化溶剂和 LiPO2F2 添加剂的组合在电静力循环中产生的效果最好。我们通过二阶导数分析定量测量了 H2 - H3 相变区域的容量损失,结果表明不同相变区域的容量衰减程度不同。通过电静态间歇滴定技术和电静态电化学阻抗谱分析,我们发现先进的电解质在通过 H2 - H3 相变时可以减少循环过程中的电阻增长。通过循环阶跃计时电流仪,我们研究了每种电解质在相变过程中的高速性能演变,发现要优化高速性能,需要将表面稳定和电导率结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrolyte strategies to minimize surface reactivity for improved reversibility of the H2–H3 phase transition†

High-nickel layered oxide cathodes are promising candidates for application in next-generation lithium-ion batteries. However, they are plagued by high surface reactivity with electrolytes and poor reversibility of the high voltage H2–H3 phase transition. While electrolytes generally impact cathode surface reactivity, herein we demonstrate that the use of advanced electrolytes can greatly improve the reversibility of the bulk H2–H3 phase transition due to a reduction in surface reactivity and resultant surface reconstruction. We compare the ability of several common electrolyte enhancement strategies to improve the reversibility of the H2–H3 phase transition with a LiNiO2 cathode. We find that while all strategies tested in this study improve the reversibility of the phase transition, a combination of fluorinated solvents and an LiPO2F2 additive yields the best results in galvanostatic cycling. We quantitatively measure the capacity loss in the H2–H3 phase transition region with second derivative analysis and show that the degree of capacity fade is different in different phase transition regions. With galvanostatic intermittent titration technique and galvanostatic electrochemical impedance spectroscopy, we find that advanced electrolytes can reduce the resistance growth with cycling when passing through the H2–H3 phase transition. With cyclic step chronoamperometry, we examine the evolution of the high-rate performance of the phase transition in each electrolyte and find that a combination of surface stabilization and conductivity are needed to optimize high-rate performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
期刊最新文献
Corrigendum to "Probiotic bacterial adsorption coupled with CRISPR/Cas12a system for mercury (II) ions detection" [Biosens. Bioelectron. 263 (2024) 116627]. Retraction notice to "A comprehensive study on transparent conducting oxides in compact microbial fuel cells: Integrated spectroscopic and electrochemical analyses for monitoring biofilm growth" [Biosens. Bioelectron. 250 (2024) 116067]. The value of electrochemical ratiometry in immunosensing: A systematic study. Conductive single enzyme nanocomposites prepared by in-situ growth of nanoscale polyaniline for high performance enzymatic bioelectrode. A skin-mountable flexible biosensor based on Cu-MOF/PEDOT composites for sweat ascorbic acid monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1