基于单个运动单元活动与电极阵列偏移的鲁棒性肌电模式识别框架

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer methods and programs in biomedicine Pub Date : 2024-09-19 DOI:10.1016/j.cmpb.2024.108434
{"title":"基于单个运动单元活动与电极阵列偏移的鲁棒性肌电模式识别框架","authors":"","doi":"10.1016/j.cmpb.2024.108434","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objective</h3><div>Electrode shift is always one of the critical factors to compromise the performance of myoelectric pattern recognition (MPR) based on surface electromyogram (SEMG). However, current studies focused on the global features of SEMG signals to mitigate this issue but it is just an oversimplified description of the human movements without incorporating microscopic neural drive information. The objective of this work is to develop a novel method for calibrating the electrode array shifts toward achieving robust MPR, leveraging individual motor unit (MU) activities obtained through advanced SEMG decomposition.</div></div><div><h3>Methods</h3><div>All of the MUs from decomposition of SEMG data recorded at the original electrode array position were first initialized to train a neural network for pattern recognition. A part of decomposed MUs could be tracked and paired with MUs obtained at the original position based on spatial distribution of their MUAP waveforms, so as to determine the shift vector (describing both the orientation and distance of the shift) implicated consistently by these multiple MU pairs. Given the known shift vector, the features of the after-shift decomposed MUs were corrected accordingly and then fed into the network to finalize the MPR task. The performance of the proposed method was evaluated with data recorded by a 16 × 8 electrode array placed over the finger extensor muscles of 8 subjects performing 10 finger movement patterns.</div></div><div><h3>Results</h3><div>The proposed method achieved a shift detection accuracy of 100 % and a pattern recognition accuracy approximating to 100 %, significantly outperforming the conventional methods with lower shift detection accuracies and lower pattern recognition accuracies (<em>p</em> &lt; 0.05).</div></div><div><h3>Conclusions</h3><div>Our method demonstrated the feasibility of using decomposed MUAP waveforms’ spatial distributions to calibrate electrode shift. This study provides a new tool to enhance the robustness of myoelectric control systems via microscopic neural drive information at an individual MU level.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust myoelectric pattern recognition framework based on individual motor unit activities against electrode array shifts\",\"authors\":\"\",\"doi\":\"10.1016/j.cmpb.2024.108434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and objective</h3><div>Electrode shift is always one of the critical factors to compromise the performance of myoelectric pattern recognition (MPR) based on surface electromyogram (SEMG). However, current studies focused on the global features of SEMG signals to mitigate this issue but it is just an oversimplified description of the human movements without incorporating microscopic neural drive information. The objective of this work is to develop a novel method for calibrating the electrode array shifts toward achieving robust MPR, leveraging individual motor unit (MU) activities obtained through advanced SEMG decomposition.</div></div><div><h3>Methods</h3><div>All of the MUs from decomposition of SEMG data recorded at the original electrode array position were first initialized to train a neural network for pattern recognition. A part of decomposed MUs could be tracked and paired with MUs obtained at the original position based on spatial distribution of their MUAP waveforms, so as to determine the shift vector (describing both the orientation and distance of the shift) implicated consistently by these multiple MU pairs. Given the known shift vector, the features of the after-shift decomposed MUs were corrected accordingly and then fed into the network to finalize the MPR task. The performance of the proposed method was evaluated with data recorded by a 16 × 8 electrode array placed over the finger extensor muscles of 8 subjects performing 10 finger movement patterns.</div></div><div><h3>Results</h3><div>The proposed method achieved a shift detection accuracy of 100 % and a pattern recognition accuracy approximating to 100 %, significantly outperforming the conventional methods with lower shift detection accuracies and lower pattern recognition accuracies (<em>p</em> &lt; 0.05).</div></div><div><h3>Conclusions</h3><div>Our method demonstrated the feasibility of using decomposed MUAP waveforms’ spatial distributions to calibrate electrode shift. This study provides a new tool to enhance the robustness of myoelectric control systems via microscopic neural drive information at an individual MU level.</div></div>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169260724004279\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004279","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的电极偏移始终是影响基于表面肌电图(SEMG)的肌电模式识别(MPR)性能的关键因素之一。然而,目前的研究侧重于 SEMG 信号的全局特征来缓解这一问题,但这只是对人体运动的一种过于简化的描述,没有纳入微观神经驱动信息。这项工作的目的是开发一种校准电极阵列移动的新方法,利用通过高级 SEMG 分解获得的单个运动单元(MU)活动实现稳健的 MPR。分解后的部分 MU 可根据其 MUAP 波形的空间分布进行跟踪,并与在原始位置获得的 MU 配对,从而确定这些多 MU 配对一致牵连的移位向量(描述移位的方向和距离)。根据已知的移位矢量,对移位后分解的 MU 的特征进行相应修正,然后输入网络,最终完成 MPR 任务。通过对 8 名受试者手指伸肌上 16 × 8 电极阵列记录的数据进行评估,评估了所提方法的性能。结果所提方法的移位检测准确率达到 100%,模式识别准确率接近 100%,明显优于移位检测准确率较低和模式识别准确率较低的传统方法(p < 0.05)。这项研究提供了一种新工具,通过单个 MU 水平的微观神经驱动信息来增强肌电控制系统的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust myoelectric pattern recognition framework based on individual motor unit activities against electrode array shifts

Background and objective

Electrode shift is always one of the critical factors to compromise the performance of myoelectric pattern recognition (MPR) based on surface electromyogram (SEMG). However, current studies focused on the global features of SEMG signals to mitigate this issue but it is just an oversimplified description of the human movements without incorporating microscopic neural drive information. The objective of this work is to develop a novel method for calibrating the electrode array shifts toward achieving robust MPR, leveraging individual motor unit (MU) activities obtained through advanced SEMG decomposition.

Methods

All of the MUs from decomposition of SEMG data recorded at the original electrode array position were first initialized to train a neural network for pattern recognition. A part of decomposed MUs could be tracked and paired with MUs obtained at the original position based on spatial distribution of their MUAP waveforms, so as to determine the shift vector (describing both the orientation and distance of the shift) implicated consistently by these multiple MU pairs. Given the known shift vector, the features of the after-shift decomposed MUs were corrected accordingly and then fed into the network to finalize the MPR task. The performance of the proposed method was evaluated with data recorded by a 16 × 8 electrode array placed over the finger extensor muscles of 8 subjects performing 10 finger movement patterns.

Results

The proposed method achieved a shift detection accuracy of 100 % and a pattern recognition accuracy approximating to 100 %, significantly outperforming the conventional methods with lower shift detection accuracies and lower pattern recognition accuracies (p < 0.05).

Conclusions

Our method demonstrated the feasibility of using decomposed MUAP waveforms’ spatial distributions to calibrate electrode shift. This study provides a new tool to enhance the robustness of myoelectric control systems via microscopic neural drive information at an individual MU level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
期刊最新文献
Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach The role of TandemHeartTM combined with ProtekDuoTM as right ventricular support device: A simulation approach The CrowdGleason dataset: Learning the Gleason grade from crowds and experts Enhancing biomechanical outcomes in proximal femoral osteotomy through optimised blade plate sizing: A neuromusculoskeletal-informed finite element analysis Discovering explainable biomarkers for breast cancer anti-PD1 response via network Shapley value analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1