{"title":"了解柔性自由增量板材成型过程中环形槽板的新起皱行为","authors":"Zhidong Chang , Mei Yang , Yongbing Li , Jun Chen","doi":"10.1016/j.jmatprotec.2024.118608","DOIUrl":null,"url":null,"abstract":"<div><div>Wrinkling behavior of sheet metal by inappropriate process parameters and the resultant variation of thickness and microstructure during incremental sheet forming (ISF) have significant impact on forming stability and geometric profile. The wrinkling-related mechanism is yet to be well understood, which make it difficult to effectively control wrinkling defects during ISF. In the present work, the wrinkling behavior and related mechanism of a typical annular grooved panel are investigated during a novel flexible free ISF process. Experiments demonstrate that during this ISF process, the sheet material sequentially undergoes 4 deformation modes: contacting state under plane strain condition, contracting state with only elastic deflection, thickening state under uniaxial compression condition, and wrinkling state where the circumferential compressive stress exceeds the critical wrinkling stress. The evolution of these deformation modes is dominantly caused by the increasing of edge contraction and circumferential stress, which are induced by the bending moment from the forming tool and auxiliary sheets. Based on the mechanism, an analytical model is developed to predict the wrinkling behavior, by which the corresponded sheet thickness, bending moment, circumferential compressive stress and critical wrinkling stress during the wrinkling process could be comprehensively calculated. Experimental results validate that the analytical model can accurately predict the wrinkling behavior under different process parameters, material properties and auxiliary sheet materials. Through microstructural characterization, numerical simulation and analytical modeling, the influence of process parameter and material property on wrinkling behavior is systematically investigated, along with the variation of sheet thickness and microstructure under different wrinkling modes. This work enhance a deep understanding of wrinkling behavior during ISF process, thereby providing effective methods for process optimization and quality improvement.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"333 ","pages":"Article 118608"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding a new wrinkling behavior of annular grooved panel during flexible free incremental sheet forming\",\"authors\":\"Zhidong Chang , Mei Yang , Yongbing Li , Jun Chen\",\"doi\":\"10.1016/j.jmatprotec.2024.118608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wrinkling behavior of sheet metal by inappropriate process parameters and the resultant variation of thickness and microstructure during incremental sheet forming (ISF) have significant impact on forming stability and geometric profile. The wrinkling-related mechanism is yet to be well understood, which make it difficult to effectively control wrinkling defects during ISF. In the present work, the wrinkling behavior and related mechanism of a typical annular grooved panel are investigated during a novel flexible free ISF process. Experiments demonstrate that during this ISF process, the sheet material sequentially undergoes 4 deformation modes: contacting state under plane strain condition, contracting state with only elastic deflection, thickening state under uniaxial compression condition, and wrinkling state where the circumferential compressive stress exceeds the critical wrinkling stress. The evolution of these deformation modes is dominantly caused by the increasing of edge contraction and circumferential stress, which are induced by the bending moment from the forming tool and auxiliary sheets. Based on the mechanism, an analytical model is developed to predict the wrinkling behavior, by which the corresponded sheet thickness, bending moment, circumferential compressive stress and critical wrinkling stress during the wrinkling process could be comprehensively calculated. Experimental results validate that the analytical model can accurately predict the wrinkling behavior under different process parameters, material properties and auxiliary sheet materials. Through microstructural characterization, numerical simulation and analytical modeling, the influence of process parameter and material property on wrinkling behavior is systematically investigated, along with the variation of sheet thickness and microstructure under different wrinkling modes. This work enhance a deep understanding of wrinkling behavior during ISF process, thereby providing effective methods for process optimization and quality improvement.</div></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"333 \",\"pages\":\"Article 118608\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924013624003261\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624003261","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Understanding a new wrinkling behavior of annular grooved panel during flexible free incremental sheet forming
Wrinkling behavior of sheet metal by inappropriate process parameters and the resultant variation of thickness and microstructure during incremental sheet forming (ISF) have significant impact on forming stability and geometric profile. The wrinkling-related mechanism is yet to be well understood, which make it difficult to effectively control wrinkling defects during ISF. In the present work, the wrinkling behavior and related mechanism of a typical annular grooved panel are investigated during a novel flexible free ISF process. Experiments demonstrate that during this ISF process, the sheet material sequentially undergoes 4 deformation modes: contacting state under plane strain condition, contracting state with only elastic deflection, thickening state under uniaxial compression condition, and wrinkling state where the circumferential compressive stress exceeds the critical wrinkling stress. The evolution of these deformation modes is dominantly caused by the increasing of edge contraction and circumferential stress, which are induced by the bending moment from the forming tool and auxiliary sheets. Based on the mechanism, an analytical model is developed to predict the wrinkling behavior, by which the corresponded sheet thickness, bending moment, circumferential compressive stress and critical wrinkling stress during the wrinkling process could be comprehensively calculated. Experimental results validate that the analytical model can accurately predict the wrinkling behavior under different process parameters, material properties and auxiliary sheet materials. Through microstructural characterization, numerical simulation and analytical modeling, the influence of process parameter and material property on wrinkling behavior is systematically investigated, along with the variation of sheet thickness and microstructure under different wrinkling modes. This work enhance a deep understanding of wrinkling behavior during ISF process, thereby providing effective methods for process optimization and quality improvement.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.