水热煅烧合成用于高温捕获二氧化碳的正硅酸锂微球

Xicheng Wang , Wentao Xia , Xianda Sun , Yuandong Yang , Xiaohan Ren , Yingjie Li
{"title":"水热煅烧合成用于高温捕获二氧化碳的正硅酸锂微球","authors":"Xicheng Wang ,&nbsp;Wentao Xia ,&nbsp;Xianda Sun ,&nbsp;Yuandong Yang ,&nbsp;Xiaohan Ren ,&nbsp;Yingjie Li","doi":"10.1016/j.ccst.2024.100303","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the Li<sub>4</sub>SiO<sub>4</sub> adsorbent has become a promising candidate for high-temperature CO<sub>2</sub> capture. The fabrication of micro-structured Li<sub>4</sub>SiO<sub>4</sub> could enhance the capture performance effectively. However, there exists a conflict between the purity and the morphology of prepared micro-structured Li<sub>4</sub>SiO<sub>4</sub>. This study proposed a novel hydrothermal-calcination method, which could produce Li<sub>4</sub>SiO<sub>4</sub> microspheres with great morphology and relatively high purity. The physicochemical properties, CO<sub>2</sub> capture performance and forming mechanisms of Li<sub>4</sub>SiO<sub>4</sub> microspheres are evaluated and investigated systematically. It is found that the hydrothermal process could fabricate micro-spherical LiOH@Li<sub>2</sub>SiO<sub>3</sub> precursor, which was further converted to Li<sub>4</sub>SiO<sub>4</sub> microspheres during the subsequent calcination process. The LiOH@Li<sub>2</sub>SiO<sub>3</sub> precursor could not only maintain the microstructure but also reduce the Li<sub>4</sub>SiO<sub>4</sub> generation temperature, thus improving the morphology as well as the purity of obtained Li<sub>4</sub>SiO<sub>4</sub> microspheres. As a result, the adsorbents could reach a CO<sub>2</sub> capture capacity of 0.167–0.222 g/g within 30 min's adsorption under 15 vol.% CO<sub>2</sub>, and their cyclic stability are diverse depending on the used calcination temperatures. The hydrothermal-calcination contributes to the future preparation of high-performance Li<sub>4</sub>SiO<sub>4</sub>-based CO<sub>2</sub> adsorbents.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100303"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal-calcination synthesis of lithium orthosilicate microspheres for high-temperature CO2 capture\",\"authors\":\"Xicheng Wang ,&nbsp;Wentao Xia ,&nbsp;Xianda Sun ,&nbsp;Yuandong Yang ,&nbsp;Xiaohan Ren ,&nbsp;Yingjie Li\",\"doi\":\"10.1016/j.ccst.2024.100303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, the Li<sub>4</sub>SiO<sub>4</sub> adsorbent has become a promising candidate for high-temperature CO<sub>2</sub> capture. The fabrication of micro-structured Li<sub>4</sub>SiO<sub>4</sub> could enhance the capture performance effectively. However, there exists a conflict between the purity and the morphology of prepared micro-structured Li<sub>4</sub>SiO<sub>4</sub>. This study proposed a novel hydrothermal-calcination method, which could produce Li<sub>4</sub>SiO<sub>4</sub> microspheres with great morphology and relatively high purity. The physicochemical properties, CO<sub>2</sub> capture performance and forming mechanisms of Li<sub>4</sub>SiO<sub>4</sub> microspheres are evaluated and investigated systematically. It is found that the hydrothermal process could fabricate micro-spherical LiOH@Li<sub>2</sub>SiO<sub>3</sub> precursor, which was further converted to Li<sub>4</sub>SiO<sub>4</sub> microspheres during the subsequent calcination process. The LiOH@Li<sub>2</sub>SiO<sub>3</sub> precursor could not only maintain the microstructure but also reduce the Li<sub>4</sub>SiO<sub>4</sub> generation temperature, thus improving the morphology as well as the purity of obtained Li<sub>4</sub>SiO<sub>4</sub> microspheres. As a result, the adsorbents could reach a CO<sub>2</sub> capture capacity of 0.167–0.222 g/g within 30 min's adsorption under 15 vol.% CO<sub>2</sub>, and their cyclic stability are diverse depending on the used calcination temperatures. The hydrothermal-calcination contributes to the future preparation of high-performance Li<sub>4</sub>SiO<sub>4</sub>-based CO<sub>2</sub> adsorbents.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"13 \",\"pages\":\"Article 100303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656824001155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,Li4SiO4 吸附剂已成为高温捕集二氧化碳的理想候选材料。制备微结构的 Li4SiO4 可以有效提高捕集性能。然而,制备的微结构 Li4SiO4 在纯度和形貌之间存在矛盾。本研究提出了一种新型的水热煅烧方法,该方法可以制备出具有良好形貌和较高纯度的 Li4SiO4 微球。该研究对 Li4SiO4 微球的理化性质、二氧化碳捕集性能和形成机理进行了系统评价和研究。研究发现,水热法可以制备微球形的 LiOH@Li2SiO3 前驱体,并在随后的煅烧过程中进一步转化为 Li4SiO4 微球。LiOH@Li2SiO3 前驱体不仅能保持微观结构,还能降低 Li4SiO4 的生成温度,从而改善获得的 Li4SiO4 微球的形态和纯度。因此,在 15 vol.% CO2 的条件下,吸附剂在 30 分钟的吸附过程中就能达到 0.167-0.222 g/g 的二氧化碳捕集量,并且其循环稳定性因所使用的煅烧温度而异。水热煅烧有助于未来制备高性能的基于 Li4SiO4 的二氧化碳吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrothermal-calcination synthesis of lithium orthosilicate microspheres for high-temperature CO2 capture
In recent years, the Li4SiO4 adsorbent has become a promising candidate for high-temperature CO2 capture. The fabrication of micro-structured Li4SiO4 could enhance the capture performance effectively. However, there exists a conflict between the purity and the morphology of prepared micro-structured Li4SiO4. This study proposed a novel hydrothermal-calcination method, which could produce Li4SiO4 microspheres with great morphology and relatively high purity. The physicochemical properties, CO2 capture performance and forming mechanisms of Li4SiO4 microspheres are evaluated and investigated systematically. It is found that the hydrothermal process could fabricate micro-spherical LiOH@Li2SiO3 precursor, which was further converted to Li4SiO4 microspheres during the subsequent calcination process. The LiOH@Li2SiO3 precursor could not only maintain the microstructure but also reduce the Li4SiO4 generation temperature, thus improving the morphology as well as the purity of obtained Li4SiO4 microspheres. As a result, the adsorbents could reach a CO2 capture capacity of 0.167–0.222 g/g within 30 min's adsorption under 15 vol.% CO2, and their cyclic stability are diverse depending on the used calcination temperatures. The hydrothermal-calcination contributes to the future preparation of high-performance Li4SiO4-based CO2 adsorbents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How do CaO/CuO materials evolve in integrated calcium and chemical looping cycles? Recent advances and challenges in solid sorbents for CO2 capture Towards net-zero in steel production: Process simulation and environmental impacts of carbon capture, storage and utilisation of blast furnace gas Developing non-aqueous slurry for CO2 capture CO2 capture performance and foaming mechanism of modified amine-based absorbents: A study based on molecular dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1