Xiaobin Zhou , Yunqiong Tang , Chao Liu , Shengpeng Mo , Yinming Fan , Dunqiu Wang , Bihong Lv , Yanan Zhang , Yinian Zhu , Zongqiang Zhu , Guohua Jing
{"title":"消除四乙烯五胺基非水吸收剂的不溶产物并提高其可逆二氧化碳捕获能力探索 2-氨基-2-甲基-1-丙醇和正丙醇的协同调节作用","authors":"Xiaobin Zhou , Yunqiong Tang , Chao Liu , Shengpeng Mo , Yinming Fan , Dunqiu Wang , Bihong Lv , Yanan Zhang , Yinian Zhu , Zongqiang Zhu , Guohua Jing","doi":"10.1016/j.ccst.2024.100310","DOIUrl":null,"url":null,"abstract":"<div><div>To tackle the prevalent challenges encountered with polyamine-based non-aqueous absorbents (NAAs), particularly the formation of viscous products and inferior regeneration performance, this study proposed an innovative synergistic regulation strategy that integrated 2-amino-2-methyl-1-propanol (AMP) and n-propanol (NPA). Accordingly, a novel tertiary tetraethylenepentamine (TEPA)-AMP-NPA (T-A-N) NAA was devised. The optimized T-A-N maintained complete homogeneity throughout the entire CO<sub>2</sub> absorption process and achieved an impressive CO<sub>2</sub> loading of 1.15 mol·mol<sup>−1</sup> while maintaining a low viscosity of merely 22.47 mPa·s. Remarkably, its absorption capacity showed little decrement after four consecutive absorption-desorption cycles, underscoring its exceptional recyclability. Within the T-A-N system, AMP underwent a reaction with CO<sub>2</sub>, yielding AMP-carbamate and protonated AMP, while TEPA engaged in CO<sub>2</sub> absorption to form zwitterionic carbamates. During the desorption process, NPA served as a regeneration activator, facilitating the conversion of stable TEPA-carbamates into less stable alkyl carbonate intermediates, thereby enhancing the T-A-N's regeneration performance. Moreover, the T-A-N system addressed the issue of TEPA-carbamate self-aggregation into insoluble gelatinous substances by leveraging the synergistic enhancement effects between AMP derivatives and NPA. Specifically, these components effectively bound TEPA-carbamate species via robust electrostatic affinity and intermolecular hydrogen-bond interactions, inhibiting their self-aggregation and preventing the formation of insoluble products. Furthermore, T-A-N exhibited a significant reduction in both sensible and latent heat requirements, by 67 % and 82 % respectively, compared to 30 wt% MEA, highlighting its advantageous energy-saving potential for CO<sub>2</sub> capture. Overall, harnessing the synergistic enhancement effects of AMP and NPA was conducive to the development of polyamine-based NAAs that offered superior CO<sub>2</sub> capture reversibility, low energy consumption, and resistance to insoluble product formation.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100310"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eliminating insoluble products and enhancing reversible CO2 capture of a tetraethylenepentamine-based non-aqueous absorbent: Exploring the synergistic regulation of 2-amino-2-methyl-1-propanol and n-propanol\",\"authors\":\"Xiaobin Zhou , Yunqiong Tang , Chao Liu , Shengpeng Mo , Yinming Fan , Dunqiu Wang , Bihong Lv , Yanan Zhang , Yinian Zhu , Zongqiang Zhu , Guohua Jing\",\"doi\":\"10.1016/j.ccst.2024.100310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To tackle the prevalent challenges encountered with polyamine-based non-aqueous absorbents (NAAs), particularly the formation of viscous products and inferior regeneration performance, this study proposed an innovative synergistic regulation strategy that integrated 2-amino-2-methyl-1-propanol (AMP) and n-propanol (NPA). Accordingly, a novel tertiary tetraethylenepentamine (TEPA)-AMP-NPA (T-A-N) NAA was devised. The optimized T-A-N maintained complete homogeneity throughout the entire CO<sub>2</sub> absorption process and achieved an impressive CO<sub>2</sub> loading of 1.15 mol·mol<sup>−1</sup> while maintaining a low viscosity of merely 22.47 mPa·s. Remarkably, its absorption capacity showed little decrement after four consecutive absorption-desorption cycles, underscoring its exceptional recyclability. Within the T-A-N system, AMP underwent a reaction with CO<sub>2</sub>, yielding AMP-carbamate and protonated AMP, while TEPA engaged in CO<sub>2</sub> absorption to form zwitterionic carbamates. During the desorption process, NPA served as a regeneration activator, facilitating the conversion of stable TEPA-carbamates into less stable alkyl carbonate intermediates, thereby enhancing the T-A-N's regeneration performance. Moreover, the T-A-N system addressed the issue of TEPA-carbamate self-aggregation into insoluble gelatinous substances by leveraging the synergistic enhancement effects between AMP derivatives and NPA. Specifically, these components effectively bound TEPA-carbamate species via robust electrostatic affinity and intermolecular hydrogen-bond interactions, inhibiting their self-aggregation and preventing the formation of insoluble products. Furthermore, T-A-N exhibited a significant reduction in both sensible and latent heat requirements, by 67 % and 82 % respectively, compared to 30 wt% MEA, highlighting its advantageous energy-saving potential for CO<sub>2</sub> capture. Overall, harnessing the synergistic enhancement effects of AMP and NPA was conducive to the development of polyamine-based NAAs that offered superior CO<sub>2</sub> capture reversibility, low energy consumption, and resistance to insoluble product formation.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"13 \",\"pages\":\"Article 100310\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656824001222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eliminating insoluble products and enhancing reversible CO2 capture of a tetraethylenepentamine-based non-aqueous absorbent: Exploring the synergistic regulation of 2-amino-2-methyl-1-propanol and n-propanol
To tackle the prevalent challenges encountered with polyamine-based non-aqueous absorbents (NAAs), particularly the formation of viscous products and inferior regeneration performance, this study proposed an innovative synergistic regulation strategy that integrated 2-amino-2-methyl-1-propanol (AMP) and n-propanol (NPA). Accordingly, a novel tertiary tetraethylenepentamine (TEPA)-AMP-NPA (T-A-N) NAA was devised. The optimized T-A-N maintained complete homogeneity throughout the entire CO2 absorption process and achieved an impressive CO2 loading of 1.15 mol·mol−1 while maintaining a low viscosity of merely 22.47 mPa·s. Remarkably, its absorption capacity showed little decrement after four consecutive absorption-desorption cycles, underscoring its exceptional recyclability. Within the T-A-N system, AMP underwent a reaction with CO2, yielding AMP-carbamate and protonated AMP, while TEPA engaged in CO2 absorption to form zwitterionic carbamates. During the desorption process, NPA served as a regeneration activator, facilitating the conversion of stable TEPA-carbamates into less stable alkyl carbonate intermediates, thereby enhancing the T-A-N's regeneration performance. Moreover, the T-A-N system addressed the issue of TEPA-carbamate self-aggregation into insoluble gelatinous substances by leveraging the synergistic enhancement effects between AMP derivatives and NPA. Specifically, these components effectively bound TEPA-carbamate species via robust electrostatic affinity and intermolecular hydrogen-bond interactions, inhibiting their self-aggregation and preventing the formation of insoluble products. Furthermore, T-A-N exhibited a significant reduction in both sensible and latent heat requirements, by 67 % and 82 % respectively, compared to 30 wt% MEA, highlighting its advantageous energy-saving potential for CO2 capture. Overall, harnessing the synergistic enhancement effects of AMP and NPA was conducive to the development of polyamine-based NAAs that offered superior CO2 capture reversibility, low energy consumption, and resistance to insoluble product formation.