批量工艺的动态和质量综合建模框架

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Research & Design Pub Date : 2024-09-21 DOI:10.1016/j.cherd.2024.09.026
Aswin Chandrasekar, Prashant Mhaskar
{"title":"批量工艺的动态和质量综合建模框架","authors":"Aswin Chandrasekar,&nbsp;Prashant Mhaskar","doi":"10.1016/j.cherd.2024.09.026","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript considers batch process operations and addresses the challenge of identifying a model that synergistically captures the dynamic input–output behavior of continuously measured variables along with the quality variables measured only at batch termination. To this end, an optimization-based framework is developed to identify one model that captures both the dynamics between the inputs and the continuously measured output variables, measurements of which are available at every time step, and the relation between the dynamic “state” information and the terminal quality measurements. Existing approaches either do not identify the dynamic and the quality model simultaneously, or they simply connect the whole trajectory of the process variables with the qualities and do not address the dynamic relationship between the inputs and the process variables. The improved modelling performance of the model obtained from this approach is demonstrated using data from a Uni-axial Rotational Molding process, and compared with existing modelling approaches.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"210 ","pages":"Pages 698-706"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integrated Dynamic and Quality Modeling Framework for Batch Processes\",\"authors\":\"Aswin Chandrasekar,&nbsp;Prashant Mhaskar\",\"doi\":\"10.1016/j.cherd.2024.09.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This manuscript considers batch process operations and addresses the challenge of identifying a model that synergistically captures the dynamic input–output behavior of continuously measured variables along with the quality variables measured only at batch termination. To this end, an optimization-based framework is developed to identify one model that captures both the dynamics between the inputs and the continuously measured output variables, measurements of which are available at every time step, and the relation between the dynamic “state” information and the terminal quality measurements. Existing approaches either do not identify the dynamic and the quality model simultaneously, or they simply connect the whole trajectory of the process variables with the qualities and do not address the dynamic relationship between the inputs and the process variables. The improved modelling performance of the model obtained from this approach is demonstrated using data from a Uni-axial Rotational Molding process, and compared with existing modelling approaches.</div></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"210 \",\"pages\":\"Pages 698-706\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876224005586\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224005586","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本手稿考虑了批量流程操作,并解决了确定一个模型的难题,该模型可协同捕捉连续测量变量的动态输入输出行为,以及仅在批量终止时测量的质量变量。为此,我们开发了一个基于优化的框架,以确定一个既能捕捉输入与连续测量的输出变量(可在每个时间步进行测量)之间动态关系,又能捕捉动态 "状态 "信息与终端质量测量之间关系的模型。现有的方法要么没有同时确定动态模型和质量模型,要么只是将过程变量的整个轨迹与质量联系起来,而没有解决输入与过程变量之间的动态关系。通过使用单轴旋转成型工艺的数据,并与现有的建模方法进行比较,证明了这种方法所获得的模型的改进建模性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Integrated Dynamic and Quality Modeling Framework for Batch Processes
This manuscript considers batch process operations and addresses the challenge of identifying a model that synergistically captures the dynamic input–output behavior of continuously measured variables along with the quality variables measured only at batch termination. To this end, an optimization-based framework is developed to identify one model that captures both the dynamics between the inputs and the continuously measured output variables, measurements of which are available at every time step, and the relation between the dynamic “state” information and the terminal quality measurements. Existing approaches either do not identify the dynamic and the quality model simultaneously, or they simply connect the whole trajectory of the process variables with the qualities and do not address the dynamic relationship between the inputs and the process variables. The improved modelling performance of the model obtained from this approach is demonstrated using data from a Uni-axial Rotational Molding process, and compared with existing modelling approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
期刊最新文献
Accelerating catalytic experimentation of water gas shift reaction using machine learning models Effect of resistance components on solid mass flow rate of the pneumatic conveying system Modeling and control of a protonic membrane steam methane reformer Improvement of bubble distribution characteristics through multi-objective optimization of flow characteristics of a swirling flow type microbubble generator with fixed blades The heat transfer characteristics of semi-molten wide sieving dilute phase particles between vertical heating surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1