{"title":"利用小球藻菌株 H1 和小球藻菌株 H2 最大化双氯芬酸的生物去除效率:揭示醋酸对微藻的影响","authors":"Hichem Tahraoui , Abd-Elmouneïm Belhadj , Abdeltif Amrane , Selma Toumi , Bassem Jaouadi , Jie Zhang","doi":"10.1016/j.jtice.2024.105783","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Diclofenac (DFC) is a commonly detected pharmaceutical pollutant in wastewater, posing environmental risks. Microalgae have emerged as potential candidates for bioremediation due to their ability to degrade pollutants. This study focuses on investigating the biodegradation potential of two newly isolated microalgae strains, <em>Chlorella vulgaris</em> strain H1 and <em>Chlorella sorokiniana</em> strain H2, towards DFC removal. The optimization of pH is crucial for enhancing the efficiency of bioremediation processes. Therefore, in addition to assessing the biodegradation potential of microalgae, this study also investigates the impact of adjusting the pH of the culture medium using acetic acid as an additional carbon source on the biodegradation process.</div></div><div><h3>Methods</h3><div>Through genetic analysis using 18S rDNA sequencing, the microalgae strains were identified. Various parameters including growth dynamics, chlorophyll content, cell proliferation, photosynthetic activity, and DFC biodegradation efficiency were comprehensively assessed. Additionally, the impact of incorporating acetic acid as an additional carbon source in the culture medium on the biodegradation process was examined.</div></div><div><h3>Significant Findings</h3><div><em>C. sorokiniana</em> strain H2 demonstrated superior biodegradation rates compared to <em>C. vulgaris</em> strain H1 across varying DFC concentrations. Specifically, <em>C. sorokiniana</em> strain H2 exhibited remarkable biodegradation rates of 84 %, 83.72 %, and 29.57 % for DFC concentrations of 12.5 mg L<sup>−1</sup>, 25 mg L<sup>−1</sup>, and 100 mg L<sup>−1</sup>, respectively. In contrast, <em>C. vulgaris</em> strain H1 showed lower biodegradation rates of 66.64 %, 29.24 %, and 1.83 % for the corresponding DFC concentrations. The study highlights the potential of <em>C. sorokiniana</em> strain H2 as a promising candidate for the removal of pharmaceutical pollutants like DFC from wastewater. Furthermore, the use of acetic acid as a supplementary carbon source enhanced the biodegradation efficiency, suggesting a potential strategy for optimizing bioremediation processes.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105783"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing diclofenac bioremoval efficiency using Chlorella vulgaris strain H1 and Chlorella sorokiniana strain H2: Unveiling the impact of acetic acid on microalgae\",\"authors\":\"Hichem Tahraoui , Abd-Elmouneïm Belhadj , Abdeltif Amrane , Selma Toumi , Bassem Jaouadi , Jie Zhang\",\"doi\":\"10.1016/j.jtice.2024.105783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Diclofenac (DFC) is a commonly detected pharmaceutical pollutant in wastewater, posing environmental risks. Microalgae have emerged as potential candidates for bioremediation due to their ability to degrade pollutants. This study focuses on investigating the biodegradation potential of two newly isolated microalgae strains, <em>Chlorella vulgaris</em> strain H1 and <em>Chlorella sorokiniana</em> strain H2, towards DFC removal. The optimization of pH is crucial for enhancing the efficiency of bioremediation processes. Therefore, in addition to assessing the biodegradation potential of microalgae, this study also investigates the impact of adjusting the pH of the culture medium using acetic acid as an additional carbon source on the biodegradation process.</div></div><div><h3>Methods</h3><div>Through genetic analysis using 18S rDNA sequencing, the microalgae strains were identified. Various parameters including growth dynamics, chlorophyll content, cell proliferation, photosynthetic activity, and DFC biodegradation efficiency were comprehensively assessed. Additionally, the impact of incorporating acetic acid as an additional carbon source in the culture medium on the biodegradation process was examined.</div></div><div><h3>Significant Findings</h3><div><em>C. sorokiniana</em> strain H2 demonstrated superior biodegradation rates compared to <em>C. vulgaris</em> strain H1 across varying DFC concentrations. Specifically, <em>C. sorokiniana</em> strain H2 exhibited remarkable biodegradation rates of 84 %, 83.72 %, and 29.57 % for DFC concentrations of 12.5 mg L<sup>−1</sup>, 25 mg L<sup>−1</sup>, and 100 mg L<sup>−1</sup>, respectively. In contrast, <em>C. vulgaris</em> strain H1 showed lower biodegradation rates of 66.64 %, 29.24 %, and 1.83 % for the corresponding DFC concentrations. The study highlights the potential of <em>C. sorokiniana</em> strain H2 as a promising candidate for the removal of pharmaceutical pollutants like DFC from wastewater. Furthermore, the use of acetic acid as a supplementary carbon source enhanced the biodegradation efficiency, suggesting a potential strategy for optimizing bioremediation processes.</div></div>\",\"PeriodicalId\":381,\"journal\":{\"name\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"volume\":\"165 \",\"pages\":\"Article 105783\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876107024004413\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024004413","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Maximizing diclofenac bioremoval efficiency using Chlorella vulgaris strain H1 and Chlorella sorokiniana strain H2: Unveiling the impact of acetic acid on microalgae
Background
Diclofenac (DFC) is a commonly detected pharmaceutical pollutant in wastewater, posing environmental risks. Microalgae have emerged as potential candidates for bioremediation due to their ability to degrade pollutants. This study focuses on investigating the biodegradation potential of two newly isolated microalgae strains, Chlorella vulgaris strain H1 and Chlorella sorokiniana strain H2, towards DFC removal. The optimization of pH is crucial for enhancing the efficiency of bioremediation processes. Therefore, in addition to assessing the biodegradation potential of microalgae, this study also investigates the impact of adjusting the pH of the culture medium using acetic acid as an additional carbon source on the biodegradation process.
Methods
Through genetic analysis using 18S rDNA sequencing, the microalgae strains were identified. Various parameters including growth dynamics, chlorophyll content, cell proliferation, photosynthetic activity, and DFC biodegradation efficiency were comprehensively assessed. Additionally, the impact of incorporating acetic acid as an additional carbon source in the culture medium on the biodegradation process was examined.
Significant Findings
C. sorokiniana strain H2 demonstrated superior biodegradation rates compared to C. vulgaris strain H1 across varying DFC concentrations. Specifically, C. sorokiniana strain H2 exhibited remarkable biodegradation rates of 84 %, 83.72 %, and 29.57 % for DFC concentrations of 12.5 mg L−1, 25 mg L−1, and 100 mg L−1, respectively. In contrast, C. vulgaris strain H1 showed lower biodegradation rates of 66.64 %, 29.24 %, and 1.83 % for the corresponding DFC concentrations. The study highlights the potential of C. sorokiniana strain H2 as a promising candidate for the removal of pharmaceutical pollutants like DFC from wastewater. Furthermore, the use of acetic acid as a supplementary carbon source enhanced the biodegradation efficiency, suggesting a potential strategy for optimizing bioremediation processes.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.